

FINAL REPORT FOR FOCUSED GROUNDWATER CHARACTERIZATION ALASKA REAL ESTATE PARKING LOT ANCHORAGE, ALASKA

ADEC SPAR TERM CONTRACT #18-8036-13 SEPTEMBER 16, 2014

Prepared For:

Alaska Department of Environmental Conservation Division of Spill Prevention and Response 555 Cordova Street Anchorage, AK 99501

> Prepared By: Ahtna Engineering Services, LLC 110 West 38th Avenue, Suite 200A Anchorage, Alaska 99503

APPROVAL PAGE

This focused groundwater characterization report for the Alaska Real Estate Parking Lot site in Anchorage, Alaska has been prepared for the Alaska Department of Environmental Conservation by Ahtna Engineering Services, LLC, with support from its teaming partner Geosyntec Consultants, Inc.

ADEC Site Name: Alaska Real Estate Parking Lot

ADEC File No: 2100.38.434

Report Prepared By:

Olga Stewart, PE

Ahma Engineering Services, LLC

Project Manager

Report Reviewed By:

Ben Martich, QEP

Geosyntec Consultants, Inc.

Senior Scientist

(This Page Intentionally Left Blank)

TABLE OF CONTENTS

		AL PAGE	
ACI	RONY	MS AND ABBREVIATIONS	vii
1.0	IN	FRODUCTION	. 1
1.1	Ba	ckground	. 1
1.2	Pro	pject Objectives	. 2
2.0	RE	GULATORY SETTING	. 3
2.1	Co	ntaminants of Potential Concern	. 3
2.2	Cle	eanup Criteria	. 3
3.0	W	ORK PERFORMED	. 5
3.1	Uti	ility Locates and Right of Way	. 5
3.2	So	il Boring Drilling and Screening	. 5
3.3	Mo	onitoring Well Installation	. 6
3.4	Mo	onitoring Well Development	. 7
3.5	Mo	onitoring Well Decommissioning	. 7
3.6	Gr	oundwater Sampling	. 8
3.7	Co	ntinuous Water Level Readings	. 9
3.8	Su	rveying	10
3.9	Wa	aste Management	10
4.0	RE	SULTS AND FINDINGS	13
4.1	Su	rvey Results	13
4.2	So	il Screening Results	13
4.3	Gr	oundwater Monitoring Results	13
4.4		oundwater Level Reading Results	
4.5	Gr	oundwater Sample Results	14
4	4.5.1	Contaminants of Potential Concern	
4	1.5.2	Monitored Natural Attenuation Parameters	15
4	1.5.3	Microbial Analysis	16
4	1.5.4	Compound Specific Isotope Analysis	17
5.0	QU	ALITY ASSURANCE AND QUALITY CONTROL	19
5.1	Per	rsonnel	19
5.2	De	contamination	19
5.3	Sa	mple Collection	19
5.4	Sa	mple Handling	19
5.5	Eq	uipment Calibration	19
5.6		alytical Data	
4	5.6.1	Field Sample Plan	20
4	5.6.2	Sample Receipt Condition	21
4	5.6.3	Precision	22
4	5.6.4	Accuracy	23
4	5.6.5	Representativeness	
4	5.6.6	Comparability	
4	5.6.7	Completeness	
4	5.6.8	Sensitivity	
6.0	CO	NCEPTUAL SITE MODEL – GROUNDWATER	25

Alusku Neul I	Estate I arking Loi, Anchorage	DEC
6.1 Sourc	es	25
6.2 Conta	minants of Potential Concern	25
6.3 Poten	tial Migration Pathways	25
	tial Exposure Routes	
	tial Receptors	
	CLUSIONS AND RECOMMENDATIONS	
	lusions	
	mmendations	
8.0 REFE	RENCES	29
TABLES – I	N TEXT	
Table 2-1: G	roundwater Cleanup Levels	3
	roundwater Samples	
Table 3-2: D	atalogger Placements	9
Table 4-1: Si	ummary of Geochemical Conditions	18
	ield Sample Plan Overview	
Table 5-2: C	alculated Relative Percent Differences	23
TABLES – A	APPENDED	
T-1-1- 1	Print I and an Date	
Table 1	Point Location Data	
Table 2	Color-Tec Screening Results	
Table 3 Table 4	Groundwater Monitoring Results Groundwater Sampling Results – Contaminants of Concern	
Table 5	Groundwater Sampling Results – Contaminants of Concern Groundwater Sampling Results – Monitored Natural Attenuation Parameters	
Table 6	Groundwater Sampling Results – Mointoired Natural Attenuation Larameters Groundwater Sampling Results – Microbial Analysis	
Table 7	Groundwater Sampling Results – Compound Specific Isotope Analysis	
Table 7	Groundwater bumpning Results Compound Specific Isotope Analysis	
CHARTS		
Chart 1	Water Level Data May 16 until August 12	
Chart 2	Analysis of ∂^{13} C and ∂^{37} Cl in PCE	
FIGURES	·	
TIGURES		
Figure 1	State and Site Vicinity	
Figure 2	Site Map	
Figure 3	Groundwater Analytical Results	
APPENDIC	<u>ES</u>	
Annondiy A	Permits	
Appendix A Appendix B	Field Data Sheets	
Appendix B	B-1 Field Notes	
	B-2 Boring Logs and Monitoring Well Completion Logs	
	B-3 Groundwater Sampling Data Sheets	
Appendix C	Photograph Log	

Appendix D Waste Disposal Documents

Appendix E Laboratory Data and Data Review

E-1 Laboratory Reports

- On-Site Environmental
- SiREM
- Pace Analytical (formerly MicroSeeps)
- TestAmerica

E-2 Data Review Checklists

Appendix F Datalogger Data (electronic only)

(This Page Intentionally Left Blank)

ACRONYMS AND ABBREVIATIONS

AACAlaska Administrative Code
ADECAlaska Department of Environmental Conservation
AhtnaAhtna Engineering Services, LLC
AREPLAlaska Real Estate Parking Lot
ARRCAlaska Railroad Corporation
bgsbelow ground surface
°Cdegrees Celsius
cDCEcis-1,2-dichloroethene
CERCLISComprehensive Environmental Response, Compensation, and Liability
Information System
COPCcontaminant of potential concern
CORSContinuously Operating Reference Station
CSIAcompound specific isotope analysis
CSMconceptual site model
1,1-DCE1,1-Dichloroethene
Dhcdehalococcoides
DOdissolved oxygen
DROdiesel-range organics
E&EEcology and Environment
EPAEnvironmental Protection Agency
GeoTekGeoTek Alaska, Inc.
GROgasoline-range organics
LCSlaboratory control sample
LCSDlaboratory control sample duplicate
μg/Lmicrogram per liter
μS/cmmicroSiemen per centimeter
MDLmethod detection limit
mg/Lmilligram per liter
ML&PMunicipal Light and Power
MNAmonitored natural attenuation
MSmatrix spike
MSDmatrix spike duplicate
mVmillivolt
MWmonitoring well
NAD83North American Datum of 1983
NAVD88North American Vertical Datum of 1988
NDnon-detect
ORPoxygen reduction potential PCEtetrachloroethene
PDBPee Dee Belemnite
PQLpractical quantitation limit
PVCpolyvinyl chloride
QCquality control
RCRAResource Conservation and Recovery Act

RPD	relative percent difference
	sample delivery group
	Standard Mean Ocean Chlorine
TCE	trichloroethene
	trans-1,2-dichloroethene
USGS	United States Geological Survey
	vinyl chloride
	vinyl chloride reductase
	volatile organic compounds
	Yellow Springs Instruments
	1 0

1.0 INTRODUCTION

Ahtna Engineering Services, LLC (Ahtna) has developed this report to detail the field activities and findings of a focused groundwater characterization study at the Alaska Real Estate Parking Lot in Anchorage, Alaska. The work was conducted for the Alaska Department of Environmental Conservation (ADEC) under Notice to Proceed Number 18-8036-01-008. This report describes the study objectives, field activities conducted to meet the objectives, and presents the data and findings. This report, along with other historical reports, will be used as a reference for preparation of a groundwater remediation feasibility study for the site.

1.1 Background

The Alaska Real Estate Parking Lot is located at the northeast corner of Fourth Avenue and Gambell Street in Anchorage, Alaska, approximately 1.3 miles east of Cook Inlet's Knik Arm (Figure 1). The approximate location is latitude 61° 13'07.68" north and longitude 149° 52'14.06" west within Section 18, Township 13 North, and Range 3 West of the Seward Meridian.

The lot is undeveloped and used as a gravel-surfaced parking lot with one communication tower/antennae used by Alaska Communication on the southeast corner. The property includes four tax lots (8A, 10, 11, 12) on Block 26A of the East Addition to the Townsite of Anchorage (Figure 2), encompassing approximately 40,600 square feet of land (Ecology and Environment [E&E], 2013). The property is owned by The Fourth and Gambell, LLC organization.

Three structures are known to be previously located on the property: a dry cleaner (C & K Cleaners) in one building on the west side of the property from 1968-1970 and a tire center/automotive shop located in two buildings on the eastern side of the property from 1976-1978 (E&E, 2013). Additionally, a company called New Method Cleaners was located at the lot around 1955 until C&K Cleaners operated there (ADEC, 2014). Contamination found a the parking lot includes volatile organic compounds (VOCs) typically associated with dry cleaning, including tetrachloroethylene (PCE) and one of its breakdown products trichloroethylene (TCE). Three other breakdown products, cis-1,2-dichloroethylene (cDCE), trans-1,2-dichloroethylene (tDCE), and vinyl chloride (VC), have not been detected in the source area but have been detected downgradient.

The property is generally flat at approximately 110 feet above mean sea level. To the north of the parking lot are residential buildings including single- and multi-family dwellings. Further north is the former location of the Alaska Native Hospital. Past the former Alaska Native Hospital is a bluff that steeply drops to an elevation more consistent with Ship Creek and sea level. The area is shown on Figure 2.

Environmental investigations have been conducted at the site beginning in 1993 with an environmental assessment. Additional investigations conducted through 2013 found PCE, and TCE in lower concentrations and with less frequency, in surface and subsurface soil, groundwater, outdoor and indoor air, and soil gas. A summary of site history was provided in the approved work plan (Ahtna, 2014). To date, eleven monitoring wells, six soil borings, and 26 temporary well points have been installed across the site to assess contamination. Two

downgradient contaminated sites, the former Anchorage Terminal Reserve and the Municipal Light and Power facility, have also been investigated for impacts to the environment. One area within in the Anchorage Terminal Reserve site, Groundwater Plume 2/3, is believed to be impacted by the Alaska Real Estate Parking Lot site. Groundwater Plume 2/3 is shown on Figure 3.

This site has also been investigated by the Environmental Protection Agency (EPA). For the EPA program, the site is known as "Fourth and Gambell Parking Lot" and identified by Comprehensive Environmental Response, Compensation, and Liability Information System (CERCLIS) identification number AKN001002925.

1.2 Project Objectives

The two objectives of this project that are reported in this document are the following:

- Assess the status of the PCE plume at the site; and
- Characterize the downgradient portion of the PCE plume north and east of the former Alaska Native Hospital property to aid in delineating the Alaska Real Estate Parking Lot plume from other downgradient plumes.

This report details the tasks performed to meet the objectives.

2.0 REGULATORY SETTING

2.1 Contaminants of Potential Concern

Sources at the site presumably include sumps connected to wood cribs and buried drums associated with dry cleaning activities, leaky disposal lines, and general housekeeping practices that were common at the time. Based on these sources and the known activities and products used at the site, the primary contaminant of potential concern is PCE. Historical testing at the site has indicated that the breakdown products of PCE, including TCE, DCE isomers, and VC, are present downgradient and may be related to this site.

2.2 Cleanup Criteria

A regulatory framework for this project has been developed by consideration of the following regulations and guidance documents.

- 18 Alaska Administrative Code (AAC) 75, Oil and Other Hazardous Substances Pollution Control, April 8, 2012.
- Site Characterization Work Plan and Reporting Guidance for Investigation of Contaminated Sites, DEC Division of Spill Prevention and Response, Contaminated Sites Program, September 23, 2009.
- *Draft* Field Sampling Guidance, DEC Division of Spill Prevention and Response, Contaminated Sites Program, May 2010.
- Monitoring Well Guidance, DEC Division of Spill Prevention and Response, Contaminated Sites Program, September 2013.
- Environmental Molecular Diagnostics, ITRC web-based guidance document, http://www.itrcweb.org/emd-2/.

Groundwater analytical data are compared to groundwater cleanup levels in Table C of 18 AAC 75.345. Table 2-1 lists the cleanup levels for the contaminants of potential concern.

TABLE 2-1: GROUNDWATER CLEANUP LEVELS

Contaminant	Cleanup Level (µg/L)
PCE	5
TCE	5
cDCE	70
tDCE	100
1,1-DCE	7
VC	2

Key:	
PCE	tetrachloroethylene
TCE	trichloroethylene
1,1-DCE	1,1-dichloroethylene
cDCE	cis-1,2-dichloroethylene
tDCE	trans-1,2-dichloroethylene
VC	vinyl chloride
μg/L	micrograms per liter

(This Page Intentionally Left Blank)

3.0 WORK PERFORMED

This section presents work performed at the Alaska Real Estate Parking Lot site from May 7 to May 22, and August 12, 2014 to accomplish the project objectives. All field and sampling procedures were performed in accordance with the approved work plan dated April 3, 2014 and the approved work plan addendum dated May 6, 2014. The project was managed by Olga Stewart, PE. Alex Geilich, Emily Freitas, and Sam Fox assisted with field work. Permits are included in Appendix A. Field notes, boring logs, and groundwater sampling data sheets are provided in Appendix B. A photograph log is included in Appendix C.

3.1 Utility Locates and Right of Way

GeoTek Alaska, Inc. (GeoTek), the drilling subcontractor, applied for a Right of Way Permit through the Municipality of Anchorage to drill three monitoring wells in the Right of Way to Ingra Street. The permit was issued on May 2, 2014 and was posted at the site for public notice. The permit is included in Appendix A.

Ahtna and the ADEC Project Manager Grant Lidren visited the Anchorage Ship Creek RV Park located on First Avenue on its opening day of the season, May 1, 2014, to obtain access to the well DPB24 and for drilling a new proposed well. The site manager, John Saari, signed a Limited Right of Entry for Hazardous Substances Investigation on May 2, 2014, which is included in Appendix A.

Ahtna staked the locations of the four proposed monitoring well locations in preparation for utility locates. Ahtna, in coordination with GeoTek, contacted the Alaska Digline on May 2, 2014 for utility locates. Enstar Natural Gas, General Communications, Inc., Alaska Communication Systems, Anchorage Municipal Light and Power (ML&P), and the Anchorage Water and Wastewater Utility all reviewed the proposed locations for utility conflicts and marked nearby underground utilities. GeoTek planner Russell Butler reviewed the utility locations in relation to the proposed monitoring well locations on May 6, 2014 and verified that all locations were at a sufficient distance from all utilities for safe drilling.

Three monitoring wells scheduled for sampling, MW28, MW12S, and MW13, are owned by ML&P. Access to these three wells was coordinated through Yelena Saville, an ML&P Environmental Engineer responsible for groundwater sampling. Wells MW-12S and MW-13 are located within the fenced area of an operating ML&P plant only accessible during working hours on business days. Ms. Saville escorted the field team on the ML&P property during sampling activities of MW-12S and MW13. MW28 is located outside the fenced area and is accessible at any time.

3.2 Soil Boring Drilling and Screening

GeoTek personnel Glen Rawson and Logan Hermanns began drilling a borehole for the proposed monitoring well 4GMW-15 at the Anchorage Ship Creek RV Park on May 7, 2014. GeoTek used a GeoProbe® Model 8040 DT direct-push drilling rig using DT-45 tooling to produce a 4.5-inch diameter borehole. On May 8, 2014, GeoTek continued drilling boreholes for proposed monitoring wells 4GMW-12, -13, and -14, in that order.

Soil was recovered from each borehole in 5-foot plastic sleeves across the water table to (and below) the Bootlegger Cove formation clay confining layer. General soil types were recorded and Color-Tec screening samples were collected from within 5-foot intervals. No soil samples were collected for laboratory analysis.

Soil was recovered from borehole 4GMW-15 from 5 to 15 feet below ground surface (bgs). Color-Tec screening samples were collected at 6.5, 10, 11, and 14 feet bgs. The Bootlegger clay confining layer was reached at 10.5 feet bgs.

Soil was recovered from borehole 4GMW-12 from 15 to 30 feet bgs. Color-Tec screening samples were collected at 18, 20, 22.5, 24.5, 27, and 30 feet bgs. The Bootlegger clay confining layer was reached at 25.5 feet bgs.

Soil was recovered from borehole 4GWM-13 from 10 to 20 feet bgs. Color-Tec screening samples were collected at 10, 13, 15, 16, and 19 feet bgs. The Bootlegger clay confining layer was reached at 15 feet bgs. Petroleum impacts were noted in all recovered soil based on olfactory and visual screening.

Soil was recovered from borehole 4GWM-14 from 5 to 15 feet bgs. Color-Tec screening samples were collected at 10, 11, 13, and 13.5 feet bgs. The Bootlegger clay confining layer was reached at 13.5 feet bgs. Petroleum impacts were noted in all recovered soil based on olfactory and visual screening. Blebs of fuel were visible on the plastic sleeve.

3.3 Monitoring Well Installation

Upon completion of each borehole, the screened interval was chosen for the monitoring well based on soil types, water level, and Color-Tec screening results. A GeoProbe® 2-inch diameter, 5-foot long, 0.010-inch screen pre-packed with 20/40 silica sand was placed in the borehole at the desired screen interval with additional Schedule 40 polyvinyl chloride (PVC) casing attached as riser to the ground surface. Colorado 10/20 silica sand was poured into the borehole annulus to provide additional packing around and above the screen. Bentonite chips hydrated in place were used as a seal above the sand pack. All four wells were completed with 8-inch diameter steel monuments mounted flush with the ground surface and encased in concrete. Details for each well are provided below and also in the boring logs attached in Appendix B.

Monitoring well 4GMW-12 was placed at a total depth of 29 feet bgs, with the screened interval placed from 24 to 29 feet bgs. The sand pack was placed from 22 to 29 feet bgs and the bentonite seal from 4.5 to 22 feet bgs. Additional sand was placed from the flush monument to 4.5 feet bgs.

Monitoring well 4GMW-13 was placed at a total depth of 13.5 feet bgs, with the screened interval placed from 8.5 to 13.5 feet bgs. The sand pack was placed from 6 to 13.5 feet bgs and the bentonite seal from 2 to 6 feet bgs. Additional sand was placed from the flush monument to 2 feet bgs.

Monitoring well 4GMW-14 was placed at a total depth of 13.5 feet bgs, with the screened interval placed from 8.5 to 13.5 feet bgs. The sand pack was placed from 5.5 to 13.5 feet bgs and

the bentonite seal from 2 to 5.5 feet bgs. Native material was placed from the flush monument to 2 feet bgs.

Monitoring well 4GMW-15 was placed at a total depth of 9.5 feet bgs, with the screened interval placed from 4.5 to 9.5 feet bgs. The sand pack was placed from 2 to 9.5 feet bgs and the bentonite seal from 0.8 to 2 feet bgs.

3.4 Monitoring Well Development

The bentonite and concrete seals in the new monitoring wells were allowed to cure for 4 days and then the wells were developed by Alex Geilich on May 13, 2014. Each well was developed by surging and purging with a submersible ProActiveTM pump. Purge water was containerized in 5-gallon buckets, and then transferred into staged 55-gallon drums for transport and disposal.

Monitoring well 4GMW-12 had 9.82 feet of water at the time of development. A total of 23 gallons, or 13.5 well volumes, of water were purged when the water became substantially sediment free.

Monitoring well 4GMW-13 had 4.18 feet of water at the time of development. A total of 8 gallons, or 11.2 well volumes, of water were purged. The water did not clear and remained a dark color with a strong fuel odor, small droplets of fuel, and sheen present.

Monitoring well 4GMW-14 had 5.93 feet of water at the time of development. A total of 13 gallons, or 10.5 well volumes, of water were purged. The water did not clear and remained a dark color with a strong fuel odor, small droplets of fuel, and sheen present.

Monitoring well 4GMW-15 had 3.86 feet of water at the time of development. Approximately 10 well volumes, or 8 gallons, of water were purged. The water was cloudy and had a fuel odor.

3.5 Monitoring Well Decommissioning

Four wells were decommissioned in place as part of this project. Monitoring wells MW-1/EPM-1, MW-2, MW-3, and MW-4, which were placed in 1997 (MW-1/EPM-1) and 2005 (MW-2, -3, -4) in the source area of the Alaska Real Estate Parking Lot, were decommissioned on May 7, 2014. Years of freeze/thaw cycles, vehicle traffic, and plowing of snow on the lot caused damage to the wells that compromised their integrity for use. All four wells were located using a metal detector and historical site map. The flush monuments were located approximately 3 to 6 inches below the gravel surface, and the PVC well risers were approximately 1 foot bgs.

At MW-1/EPM-1, the lid of the flush monument was missing, the PVC well cap was missing, and both the monument and PVC were filled with dirt, bentonite, and debris to the surface. The flush monument and concrete apron were removed, disposed, and the area was backfilled with pea gravel and native material flush with the parking lot surface.

At MW-2, the lid of the flush monument was missing, but the PVC well cap was in place. The monument annulus was filled with dirt and bentonite. Only 15 feet of the original 45 feet of depth was clear; the bottom 30 feet of the well, including the screened interval, was filled and the bottom of the well was not able to be removed. The remaining 15 feet was filled with bentonite

chips hydrated in place. The flush monument and cold patch apron were removed, disposed, and the area was backfilled with pea gravel and native material flush with the parking lot surface.

At MW-3, the lid of the flush monument was intact, but the sidewalls had been crushed inward. The PVC well cap was present but was loosely placed atop of the PVC. Only 7 feet of the original 45 feet of depth was clear; the bottom 38 feet of the well, including the screened interval, was filled and the bottom of the well was not able to be removed. The remaining 7 feet was filled with bentonite chips hydrated in place. The flush monument was removed, disposed, and the area was backfilled with pea gravel and native material flush with the parking lot surface.

At MW-4, the lid of the flush monument was intact, but the PVC well cap was missing. Only 30 feet of the original 50 feet was clear; the bottom 20 feet of the well, including the screened interval, was filled and the bottom of the well was not able to be removed. The remaining 30 feet was filled with bentonite chips hydrated in place. The flush monument and cold patch apron were removed, disposed, and the area was backfilled with pea gravel and native material flush with the parking lot surface.

Photographs of the monitoring well decommissioning are included in Appendix C.

3.6 Groundwater Sampling

Thirteen groundwater monitoring wells were sampled from May 13, 2014 until May 15, 2014 for assessment of contaminants, bacteria, attenuation parameters, and isotope analysis. All wells were sampled using a submersible bladder pump with Teflon bladder, with the exception of well DPB24. Well DPB24 was only 1-inch diameter and unable to accommodate the bladder pump so the well was sampled using a peristaltic pump with Teflon-lined tubing. All wells were sampled using low-flow sampling procedures using a Yellow Springs Instruments (YSI) model 556 water quality meter to record groundwater quality parameters. An Oakton T-100 turbidimeter was also used to record turbidity measurements during purging.

Low-flow procedures were used for sampling at all wells. The drawdown and at least three of the five water quality parameters on all wells stabilized during purging. No wells were purged dry. The samples collected are listed in Table 3-1. Groundwater sampling logs are provided in Appendix B.

TABLE 3-1: GROUNDWATER SAMPLES

Well ID	VOCs	MNA	CSIA	Dhc	vcrA
MW-5	X	X	X	X	
MW-6	X	X	X	X	
MW-7	X				
MW-8	X				
MW-10	X	X			
4GMW-12	X				
4GMW-13	X				
4GMW-14	X				
4GMW-15	X	X	X		
MW12S (ML&P)	X				
MW-13 (ML&P)	X				
MW-28 (ML&P)	X	X	X	X	X
DPB24 (ARRC)	X				

Key:

VOCs volatile organic compounds MW monitoring well

MNA monitored natural attenuation ML&P Municipal Light and Power CSIA compound specific isotope analysis ARRC Alaska Railroad Corporation Dhc dehalococcoides vcrA vinyl chloride reductase

3.7 Continuous Water Level Readings

Once sampling was complete at monitoring wells DPB24, MW12S, and 4GMW-13, Solinst® data logging pressure transducers (dataloggers) were placed in the wells. The dataloggers were deployed on steel wire with swivels to prevent erroneous measurements from cable stretch or twisting. The dataloggers were set to record pressure every hour on the hour. One barometric pressure datalogger (barologger) was placed at the site in well 4GMW-14. This location deviated from the work plan because of restricted access to well MW-12S at ML&P. Details of the datalogger placements are shown in Table 3-2. Data were collected by the dataloggers from May 16 until August 12, 2014.

During review of field notes in July, it was determined that the barologger had been mistakenly deployed below the water table. This was corrected on July 15, 2014, when the steel cable was shortened for the barologger to collect air pressure data at well 4GMW-14. Due to the lack of barometric pressure data from May until July, the dataloggers will remain in place until spring 2015 to continue collecting groundwater level data for comparison to Ship Creek surface water levels.

TABLE 3-2: DATALOGGER PLACEMENTS

Well ID	Datalogger ID	Deploy Depth	Water Depth	Total Depth of Well
		(ft btoc)	(ft btoc)	(ft btoc)
4GMW-14	0042030206	12.84	5.84	13.22
4GMW-14	0012030250	2.0	5.84	13.22
MW12S (ML&P)	0022029069	8.06	6.45	9.35
DPB24 (ARRC)	0042016879	11.37	6.57	11.82

Key:

ARRC Alaska Railroad Corporation ft btoc feet below top of casing

ML&P Municipal Light and Power

3.8 Surveying

Horizontal locations of each monitoring well that was sampled or decommissioned were collected using a handheld Trimble GeoXH 6000 GPS unit. The data was post-processed using Trimble Pathfinder Office software. The base station used for differential correction was TBON, a Department of Transportation Continuously Operating Reference Station (CORS) located in Anchorage.

Vertical locations (elevations) of the four new wells and the two additional wells used for datalogger placement were surveyed by Dylan Hickey, an Ahtna staff surveyor. The survey was referenced to a bench mark located in the north face of a building foundation northeast of the intersection at Sixth and Cordova streets in Anchorage (permanent identifier TT0728).

The elevation of surface water at Ship Creek was also surveyed at a location close to the site to provide comparison to the United States Geologic Survey (USGS) gauge 15276000 located approximately 11 river miles upstream. The measurement location at Ship Creek is shown on Figure 3 and the gauge location is shown on Figure 1.

3.9 Waste Management

Minimal soil cuttings were created during direct-push drilling for boring and well placement. All soil retrieved for screening was placed in one 55-gallon drum labeled non-hazardous waste. The drum lid was secured and the drum staged at the corner of First Avenue and Ingra Street in Anchorage during drilling. Once all soil was placed in the drum, a soil sample from the drum was collected for analysis of VOCs by EPA Method 8260. The sample was named 14-AKRE-Cuttings and a trip blank was included with the sample. The drum was then loaded into the field vehicle, and moved to the Alaska Real Estate Parking Lot where it was staged with the purge water from groundwater monitoring in a locked chain-linked fence until pickup.

Soil cutting results were reported by TestAmerica on May 21, 2014. No analytes were detected at concentrations greater than hazardous waste levels. Emerald Alaska, Inc. prepared a Non-Hazardous Waste Manifest for transport to and disposal of the soil at their facility in Anchorage, Alaska. A copy of the manifest is included in Appendix D.

Well monuments and aprons generated during well decommissioning were collected by GeoTek and disposed as general debris at the Anchorage Regional Landfill in Eagle River, Alaska. No well piping or screens were removed; no well decommissioning materials were determined to be listed waste requiring disposal as hazardous waste.

All development and purge water was collected in 5-gallon buckets and transferred to two 55-gallon drums located at a staging area at the Alaska Real Estate Parking Lot site. The drums were labeled hazardous waste with the drum lid secured. The staging area was surrounded by locked chain-linked fencing until pickup.

All disposable sampling materials that came in contact with development and purge water, including paper towels, nitrile gloves, and sample tubing, as well as spent Color-Tec tubes from soil screening during drilling, were placed in one 55-gallon drum located in the secured waste

staging area at the Alaska Real Estate Parking Lot site. The drum was labeled hazardous waste with the drum lid secured.

Ahtna coordinated with the EPA to determine the correct site identification for hazardous waste disposal. Per Ted Enderle of EPA Region 10, EPA Resource Conservation and Recovery Act (RCRA) identification number AKR000201574 was used for manifesting and disposal. Emerald Alaska, Inc. prepared a Uniform Hazardous Waste Manifest for the two purge water drums and one solid waste drum for disposal as F002 listed hazardous waste. The ADEC was listed as the generator of waste and US Ecology Idaho, Inc. as the final disposal facility.

In preparation for transportation of waste, an ADEC contaminated soil transport and treatment approval form was obtained (Appendix D). Emerald Alaska, Inc. picked up, transported, and disposed of the one drum of non-hazardous soil at their facility in Anchorage, Alaska on May 22, 14. Emerald Alaska, Inc. picked up, transported, and transferred the three drums of F002 hazardous waste on May 22, 2014. US Ecology Idaho, Inc. received the waste on June 18, 2014. Copies of the completed manifests are included in Appendix D.

(This Page Intentionally Left Blank)

4.0 RESULTS AND FINDINGS

The following sections document the results and findings of work completed at the Alaska Real Estate Parking Lot site from May 7 to May 22, and August 12, 2014 to accomplish the project objectives.

4.1 Survey Results

Horizontal locations of the four new monitoring wells, the four decommissioned wells, and the nine other wells sampled at the site are included in Table 1. Results are reported in northings and eastings, in US survey feet, in the North American Datum of 1983 (NAD83), epoch 2011, and coordinate system Alaska State Plane Zone 4.

The vertical locations of the four new monitoring wells and the two additional wells used for datalogger placement are included in Table 1. The results are reported in the North American Vertical Datum of 1988 (NAVD88) in feet.

To prepare accurate figures for the site, historic survey reports were used to place locations of additional site features and historic sampling locations. GPS data reported in latitude and longitude by E&E in 2013 was used to locate the points BH01GW through BH12GW. Survey data reported by Mammoth Consulting for OASIS in 2011 was used to locate the point MW-11 and confirm the horizontal data for points MW-5 through MW-11. Survey data reported by Karabelnikoff Surveying for CH2M Hill in 2008 was used to locate the points WP1 through WP15, and confirm locations of MW-1 through MW-9, MW12S, MW24S, and MW28. The compiled data for the points used are also included in Table 1.

4.2 Soil Screening Results

Results of the soil screened for total VOCs using the Color-Tec method are shown in Table 2. Soil analyzed from boreholes 4GMW-13, 4GMW-14, and 4GMW-15 had one detection each of low-level VOCs. Additionally, the field team noted a strong hydrocarbon odor and visual evidence of hydrocarbon staining of soil at boreholes 4GMW-13, 4GMW-14, and 4GMW-15. No soil samples were collected to verify results.

4.3 Groundwater Monitoring Results

Groundwater monitoring results are shown in Table 3. They were used to indicate stability during sampling and to indicate water quality and chemistry conditions for use in determining whether the groundwater is within the same network. The groundwater monitoring parameters measured were temperature, pH, conductivity, oxidation-reduction potential (ORP), dissolved oxygen (DO), and turbidity.

Results for pH were fairly consistent throughout all samples, ranging from 6.08 to 7.18, all within the neutral pH range that supports microbes. Temperature was highest in the wells in the source area at around 8 degrees Celsius ($^{\circ}$ C) and lowest in the wells nearest Ship Creek at around 4 $^{\circ}$ C. Conductivity at 11 of the 13 wells was fairly consistent, ranging from 0.3 to 0.8 microSiemens per centimeter (μ S/cm), all within one standard deviation. The background well

had a reading of $0.995~\mu\text{S/cm}$ and well MW-12S had a reading of $0.208~\mu\text{S/cm}$. Both are within two standard deviations and can likely be considered from the same groundwater network.

DO and ORP measurements are used to assess whether conditions are favorable for contaminant degradation via biodegradation and reported with the monitored natural attenuation (MNA) results (Section 4.5.2).

4.4 Groundwater Level Reading Results

Dataloggers were deployed at the site in three downgradient wells from May 16 until August 12, 2014 to continuously read water levels in the wells relative to each other (Figure 3). The dataloggers will remain deployed until spring 2015 to continue reading water level and barometric pressure to allow comparison to surface water levels at Ship Creek. Raw datalogger data is included in Appendix F.

Groundwater levels were plotted versus time for the three wells. Data are shown in Chart 1. Note that the data are not corrected for barometric pressure prior to July 18, 2014 and should only be used as relative to each other. Six times were chosen for evaluation of groundwater flow direction, listed below and shown on Chart 1. These times were chosen at the relative peaks and troughs of groundwater levels to assess the extent of variation in flow direction over the period of data collection.

- 05/27/2014 02:00 relative low for DPB24
- 06/08/2014 10:00 relative low for all three wells
- 06/14/2014 12:00 relative high for DPB24
- 07/06/2014 19:00 relative low for DPB24
- 07/29/2014 10:00 relative high for all three wells
- 08/04/2014 17:00 relative low for all three wells

Groundwater flow direction at all six times was consistently west, with small variation to the southwest, as shown on Figure 3.

4.5 Groundwater Sample Results

Sample results are shown in Tables 4 through 7, appended to this report, and described in the following sections.

4.5.1 Contaminants of Potential Concern

The contaminants of potential concern (COPCs) that were analyzed were PCE, TCE, cDCE, tDCE, 1,1-DCE, and VC. These results are used to determine whether the chemicals are present at concentrations that are greater than the cleanup levels and to evaluate degradation based on the presence of daughter products. Because the source is PCE, the presence of TCE, DCE, and VC may indicate that degradation is occurring through reductive dechlorination.

PCE was detected at concentrations greater than the cleanup level in the three wells in the source area (MW-5, MW-6, MW-7), and one well downgradient (MW-28). PCE was detected at

concentrations less than the cleanup level in well MW-8, believed to be along the east edge of the plume. Downgradient wells DPB24 and 4GMW15 did not have PCE detected and bound the plume to the west. The two new eastern-most wells, 4GMW-12 and 4GMW-13, had no detections and now bound the plume to the east.

TCE was detected at concentrations greater than the cleanup level only in MW-28. TCE was not detected in source wells MW-5 and MW-6, but the practical quantitation limit (PQL) and method detection limit (MDL) were greater than the cleanup level. Based on these and historical data, it is unlikely that TCE is present in the source area at concentrations greater than the cleanup level.

The compound cDCE was detected at concentrations greater than the cleanup level in wells MW-28 and 4GMW-14, both located downgradient. cDCE was also detected in three other downgradient wells, 4GMW-15, MW-12S, and MW-13, but at concentrations less than the cleanup level. cDCE was not detected in the source area.

The compound tDCE was only detected at concentrations less than the cleanup level. Detections were found in downgradient wells 4GMW-14, 4GMW-15, and MW-28. tDCE was not detected in the source area.

The compound 1,1-DCE was not detected in any well and the PQL and MDL were all less than the applicable cleanup level.

Vinyl chloride was detected at concentrations greater than the cleanup level in downgradient wells 4GMW-14, 4GMW-15, and MW-28. At all other wells vinyl chloride was not detected.

These data are shown in Table 4, along with the most current data available for each location represented on Figure 3. There are not sufficient historic data points to analyze results over time; the data are not used to determine trends. However, these data indicate that degradation is not occurring within the source area as PCE remains at concentrations consistent with the previous results from 2007 and 2008 and none of the degradation products of PCE were detected.

However, the results indicate that degradation likely is occurring downgradient at well MW-28, as TCE, DCE, and VC were detected in the well. These results are also consistent with previous sample results from MW-28.

4.5.2 Monitored Natural Attenuation Parameters

The MNA parameters that were analyzed by a laboratory were iron, nitrate and nitrite, sulfate, total organic carbon, methane, ethane, and ethene. The MNA parameters that were analyzed with a water quality meter during field sampling were DO and ORP. For the degradation of PCE into daughter products via reductive dechlorination, typically the conditions need to be strongly anaerobic. In an anaerobic environment, iron, methane, ethane, and ethene concentrations typically are higher than the background levels, and nitrate/nitrite, sulfate, DO, and ORP typically are lower than the background levels. Total organic carbon gives an indication of how much organic material may be available for degradation and ideally should be elevated to support continual biodegradation. Monitoring well MW-10 was used as the background well for comparison purposes. DO and ORP results are shown in Table 3. Laboratory results are shown in Table 5.

Background DO was 11.17 milligrams per liter (mg/L), which is nearly the maximum solubility of oxygen in water at 9°C. All monitoring wells showed lower DO than the background concentration. Five downgradient wells had DO concentrations less than 0.5 mg/L, indicating that anaerobic conditions exist and the reductive pathway would be supported. DO in the source area was around 3 mg/L, which indicates that reduction likely would not occur.

Results show that ORP is negative in the downgradient areas, particularly in areas that showed evidence of petroleum contamination. The negative results ranged from -44.7 to -9.3 millivolts (mV), which suggests that the reductive pathway is active. ORP in the source area ranged from 67 to 221 mV, indicating an oxidative environment with minimal existing reducing conditions.

Comparison of the concentrations of MNA parameters of the two source area wells (MW-5 and MW-6) to the background well show that biodegradation of PCE in the source area does not appear to be occurring in any appreciable manner. Iron, methane, ethane, and ethene are all lower than background, and nitrate/nitrite and sulfate are higher than background. Total organic carbon is at a concentration that likely cannot support continual biodegradation.

Comparison of the MNA parameters in the two downgradient wells (MW-28 and 4GMW-15) to the background wells show that degradation conditions are present in the lower portion of the plume. At MW-28, iron, methane, ethane, and ethane are all higher than background by at least one order of magnitude. Nitrite/nitrate and sulfate are all non-detect at concentrations at least one order of magnitude lower than the background concentration.

4.5.3 Microbial Analysis

Two types of microbial analysis were sampled for in groundwater at the site: the presence of *Dehalococcoides* (Dhc) bacteria and the vinyl chloride reductase (vcrA) gene. Dhc are the only known organisms capable of completely dechlorinating chloroethenes (i.e., PCE and its daughter products) to ethane. Negative results for Dhc indicate that dechlorination will be incomplete. Positive results indicate that complete dechlorination may be possible. vcrA is the gene in Dhc that is the most common enzyme used to convert VC to ethene to complete the dechlorination process.

Three samples were submitted for analysis of Dhc – two from source area wells and one from downgradient well MW-28. Results are shown in Table 6. Dhc was not found at detectable concentrations in either source well MW-5 or MW-6, indicating that dechlorination is not likely occurring in the source area. Dhc was found in MW-28 at a population of 1 x 10⁶ per liter, indicating that enough Dhc is present to completely dechlorinate PCE to ethene. Groundwater from MW-28 was also analyzed for vcrA, which was found at a concentration 4 x 10⁵ per liter. Since the concentration of vcrA is similar (within 3-fold) to the concentration of Dhc, this indicates that the entire Dhc population likely has the vcrA gene and that complete reductive dechlorination of PCE to ethene is highly possible. Ethene was detected in the groundwater at MW-28 so it is unlikely that dechlorination would stall at VC.

4.5.4 Compound Specific Isotope Analysis

Groundwater samples from two source area wells (MW-5 and MW-6) and two Ship Creek area wells (MW-28 and 4GMW-15) were submitted to Pace Analytical for compound specific isotope analysis (CSIA) of carbon and chlorine. Isotopic signatures can be compared at various locations through a contaminant plume as another line of evidence that degradation is occurring, or to compare source signatures. Degradation processes preferentially degrade "lighter" isotopes, leading to an increase in "heavier" isotopes in the parent compound. Isotopic signatures of parent compounds, such as PCE, become less negative ("heavier") as degradation proceeds due to this preferential removal of isotopically light molecules.

The relative abundance of the two stable isotopes of carbon (13 C and 12 C) and chlorine (37 Cl and 35 Cl) in PCE were measured. Since concentrations of daughter products were not found in the source area to offer a comparison, the analysis was not conducted on TCE, DCE, or VC. The relative abundance ratios were expressed relative to the international standards of 13 C and 12 C in Pee Dee Belemnite (PDB) and 37 Cl and 35 Cl in Standard Mean Ocean Chlorine (SMOC). Measured values were reported as δ^{13} C and δ^{37} Cl, respectively, in units of parts per thousand (‰). The terms are defined as follows:

$$\delta^{13}C (\%_0) = \left[\frac{(^{13}C/^{12}C)_{sample} - (^{13}C/^{12}C)_{standard}}{(^{13}C/^{12}C)_{standard}} \right] \times 1000 \text{ and}$$

$$\delta^{37}Cl (\%_0) = \left[\frac{(^{37}Cl/^{35}Cl)_{sample} - (^{37}Cl/^{35}Cl)_{standard}}{(^{37}Cl/^{35}Cl)_{standard}} \right] \times 1000 \text{ (USEPA, 2008)}.$$

Results for MW-5, MW-6, and MW-28 are considered accurate to the $\pm 0.5\%$ standard for CSIA. The PCE concentration in 4GMW-15 was low, therefore the carbon isotopic signature is considered usable to $\pm 2\%$ and the chlorine isotopic signature was not obtained. Results are shown in Table 7.

In the known source area, carbon isotopic signatures at MW-5 and MW-6 were -34.07‰ and -33.79‰, respectively. Chlorine isotopic signatures at these monitoring wells were 0.4‰ and 0.31‰, respectively. Generally, when the isotopic signatures of carbon are within 0.5‰ of one another, as they are for MW-5 and MW-6, the samples can be considered to represent the same source material, likely with little or no biodegradation occurring along the flow-path between the two wells.

MW-28 in the Ship Creek area had a carbon isotopic signature of -36.34‰ and a chlorine isotopic signature of -1.21‰, both of which are significantly lighter than the corresponding isotopes at MW-5 and MW-6. Therefore the data suggests either a different source, or that the PCE at MW-5 and MW-6 has undergone more degradation than the PCE observed at MW-28.

Carbon and chlorine isotopic signatures in PCE at various plume locations may be plotted versus one another for two dimensional analysis. Carbon and chlorine isotopic signatures may have a linear relationship (straight line on a bivariate plot) if results arise from the same source, and degradation proceeds at similar rates throughout a monitoring well network. Deviations from the linear relationship are caused by different sources or changes in degradation mechanisms and rates. Chart 2 shows a two dimensional analysis of δ^{13} C and δ^{37} Cl in PCE for MW-5, MW-6, and

MW-28. The error bars correspond to $\pm 0.5\%$. Data from 4GMW-15 was omitted because it has an error of $\pm 2\%$ for carbon, and the chlorine $\delta^{37}Cl$ was not reported due to a low PCE concentration. Data points for MW-5 and MW-6 lie relatively close to one another in comparison to MW-28. However, more data points are needed to for a conclusive two dimensional analysis and to determine if MW-28 is an outlier, or represents a second source.

CSIA results are best utilized when evaluated with geochemical parameters and information on degradation mechanisms. Geochemical conditions at MW-28 and 4GMW-15 in the Ship Creek area are more conducive to reductive dechlorination than MW-5 and MW-6 in the source area. The difference in geochemical conditions is summarized in Table 4-1.

TABLE 4-1: SUMMARY OF GEOCHEMICAL CONDITIONS

Parameter	MW-28 and 4GMW-15	Comparison	MW-5 and MW-6
	Average		Average
Dissolved Oxygen	0.67 mg/L	<	3.07 mg/L
Oxidation-Reduction Potential	-14.8 mV	<	113.45 mV
Nitrates	0.11 mg/L	<	5.2 mg/L
Total Organic Carbon	3.1 mg/L	>	1.7 mg/L
Methane	780 ug/L	>	0.13 ug/L
Ethane	0.205 ug/L	>	0.016 ug/L
Ethene	5.6 ug/L	>	0.014 ug/L
Microbes	1 x 10 ⁶ Dhc	>	ND

Key:

Dhc Dehalococcoides mg/L milligrams per liter

mV millivolts

ug/L micrograms per liter

ND non-detect

In summary, CSIA results show PCE with heavier isotopic signatures at MW-5 and MW-6 in the source area than at MW-28 in the Ship Creek area. In other words, if both areas of contamination were caused by the same source, PCE remaining at MW-5 and MW-6 is more degraded than PCE remaining at MW-28. However, geochemical parameters and microbial population analyses show that conditions at MW-28 are more conducive to reductive dechlorination. Therefore it is expected that PCE at MW-28 would be more degraded than PCE at MW-5 and MW-6 if both were caused by the same source.

It appears more probable that two sources exist, given the combination of CSIA, geochemical, and Dhc data. In order for PCE at MW-5 and MW-6 to be from the same source as MW-28, it would have had to undergo degradation to result in a heavier δ^{13} C-PCE, but yet there are no daughter products detected there; the geochemistry is shown to be unfavorable for degradation; and Dhc were not detected there. A more likely explanation is that the MW-28 PCE represents a different source, or combination of sources, than MW-5 and MW-6.

5.0 QUALITY ASSURANCE AND QUALITY CONTROL

The following sections details the quality assurance and quality control measures taken during the completion of this project to ensure that the quality objectives were met.

5.1 Personnel

Fieldwork, including analytical sampling, was performed by Olga Stewart, Emily Freitas, Alex Geilich, and Sam Fox, all who meet the definition of "qualified person" per 18 AAC 75.990(100).

5.2 Decontamination

Equipment used for this project that required decontamination included a water level meter, bladder pump, flow-through cell, and submersible semi-disposable pump used for well development. The pumps were decontaminated in a three step process including washing and pumping through the anionic detergent Alconox, rinsing and pumping through with tap water, and then rinsing and pumping through with deionized water. The flow-through cell and water level meter were washed with Alconox and rinsed with deionized water.

5.3 Sample Collection

Groundwater samples were collected directly into laboratory-provided, individual, dedicated containers from the sample pump. Samples collected for volatile analyses were collected first, followed by the other analytes. Samples were preserved in the field as specified in the work plan; the iron samples and Dhc samples were filtered in the field.

5.4 Sample Handling

Following collection, samples were placed in coolers with sufficient gel ice to maintain temperatures for sample preservation. At the end of each day, samples were transferred to a refrigerator at the Ahtna office for storage until shipment to the laboratory for analysis. Samples were tracked by use of chain of custody forms with each sample and the trip blank individually identified on the forms. The forms were signed and dated when the samples were packaged for shipment to the respective laboratories, and signed and dated when received by the laboratories.

5.5 Equipment Calibration

Equipment used for this project that required calibration included a water quality meter, and a turbidimeter. Each were calibrated each day prior to sampling. The calibrated reading was compared to the standard and the relative percent difference (RPD) calculated. Calibration results were within the following tolerances:

- Conductivity $\pm 1.5\%$
- DO \pm 5%
- pH ± 0.05
- ORP \pm 5 mV

5.6 Analytical Data

The analytical data were reviewed for quality including completeness, correctness, and compliance with method procedures and quality control requirements. The precision, accuracy, representativeness, comparability, completeness, and sensitivity were evaluated as required by ADEC guidelines. An ADEC Laboratory Data Review Checklist is included for the five sample delivery groups (SDG) in Appendix E.

Based on the review, all sample results are considered valid with no data rejected. One "J" qualifier was assigned to the gasoline-range organics (GRO) result for sample 14-AKRE-Cuttings because surrogate recovery was outside acceptable limits. "J" qualifiers were assigned to data reported for ethane and ethene greater than the MDL but less than the PQL. Details of the analytical review are summarized in the following sections.

5.6.1 Field Sample Plan

Table 5-1 lists the field sample numbers, corresponding laboratory and laboratory numbers, requested analyses, and identifies quality control (QC) samples.

TABLE 5-1: FIELD SAMPLE PLAN OVERVIEW Laboratory Lab Sample ID Analyses

Field Sample 1D	Laboratory	Lab Sample ID	Requested	ŲĊ	SDG
	SiREM	DHC-10436	Gene-Trac Dhc		S-3215
	Pace	P1405002-01A	CSIA – Carbon CSIA-Chlorine		P1405002
14-AREPL-MW5-GW	OnSite	05-144-03	VOCs, TOC, Nitrate/Nitrite, Sulfate, Total Iron, Dissolved Iron, Methane, Ethane, Ethene		1405-144
	SiREM	DHC-10437	Gene-Trac Dhc		S-3215
	Pace	P1405002-03A	CSIA – Carbon CSIA-Chlorine		P1405002
14-AREPL-MW6-GW	OnSite	05-144-04	VOCs, TOC, Nitrate/Nitrite, Sulfate, Total Iron, Dissolved Iron, Methane, Ethane, Ethene		1405-144
14-AREPL-MW60-GW	OnSite	05-144-15	VOCs	Duplicate of 14-AREPL- MW6-GW	1405-144
14-AREPL-MW7-GW	OnSite	05-144-02	VOCs		1405-144
14-AREPL-MW8-GW	OnSite	05-144-09	VOCs		1405-144
14-AREPL-MW80-GW	OnSite	05-144-14	VOCs	Duplicate of 14-AREPL- MW8-GW	1405-144

Field Sample ID	Laboratory	Lab Sample ID	Analyses Requested	QC	SDG
14-AREPL-MW10-GW	OnSite	05-144-01	VOCs, TOC, Nitrate/Nitrite, Sulfate, Total Iron, Dissolved Iron, Methane, Ethane, Ethene		1405-144
14-AREPL-4GMW-12-GW	OnSite	05-144-10	VOCs		1405-144
14-AREPL-4GMW-13-GW	OnSite	05-144-11	VOCs		1405-144
14-AREPL-4GMW-14-GW	OnSite	05-144-12	VOCs		1405-144
	Pace	P1405002-04A	CSIA – Carbon CSIA-Chlorine		P1405002
14-AREPL-4GMW-15-GW	OnSite	05-144-12	VOCs, TOC, Nitrate/Nitrite, Sulfate, Total Iron, Dissolved Iron, Methane, Ethane, Ethene		1405-144
14-AREPL-MW12S-GW	OnSite	05-144-06	VOCs		1405-144
14-AREPL-MW-13-GW	OnSite	05-144-07	VOCs		1405-144
	SiREM	DHC-10438 VCR-4886	Gene-Trac Dhc, Gene-Trac VC		S-3215
	Pace	P1405002-02A	CSIA – Carbon CSIA-Chlorine		P1405002
14-AREPL-MW-28-GW	OnSite	05-144-05	VOCs, TOC, Nitrate/Nitrite, Sulfate, Total Iron, Dissolved Iron, Methane, Ethane, Ethene		1405-144
14-AREPL-DPB24-GW	OnSite	05-144-08	VOCs		1405-144
14-AREPL-TB	OnSite	05-144-16	VOCs	Trip Blank	1405-144
14-AKRE-Cuttings	TestAmerica	230-108-1	GRO, DRO, VOCs		230-108
14-AKRE-TB	TestAmerica	230-108-2	GRO, VOCs	Trip Blank	230-108

Key:

AREPL Alaska Real Estate Parking Lot CSIA carbon stable isotope analysis

Dhc dehalococcoides
DRO diesel-range organics
GRO gasoline-range organics

QC quality control

SDG sample delivery group TOC total organic carbon

VOCs volatile organic compounds

VC vinyl chloride

5.6.2 Sample Receipt Condition

Samples were divided into four groups for laboratory delivery. Holding time criteria were met for all laboratories and analyses.

Water samples were shipped to OnSite Environmental in Redmond, Washington on May 16, 2014 via Alaska Air Cargo Goldstreak. Fifteen samples and a trip blank were received in one SDG on May 17, 2014, properly preserved and within the acceptable temperature range of 2°C to 6°C. All samples were received in good condition. Five samples were shipped to Pace Analytical (formerly Microseeps) in Pittsburgh, Pennsylvania on May 20, 2014 for analysis of methane, ethane, and ethene. The samples were received at 2°C in good condition and properly preserved on May 21, 2014. OnSite analyzed samples for total organic carbon, Nitrate/Nitrite, Sulfate, Total Iron, dissolved iron, PCE, TCE, cDCE, tDCE, 1,1-DCE, and VC. All results were reported under work order number 1405-144. Onsite and Pace are ADEC-certified laboratories for the analyses performed.

Samples were shipped to Pace Analytical (formerly known as Microseeps) in Pittsburgh, Pennsylvania on May 16, 2014 via FedEx. Four samples were received in one SDG on May 19, 2014, properly preserved, at 5°C, and in good condition. Five vials had a sample name that did not match the Chain of Custody. The Ahtna project manager was contacted for clarification. Pace Analytical analyzed the samples for CSIA-Carbon and CSIA-Chlorine and reported the results under work order number P1405002. ADEC does not certify laboratories for CSIA analysis.

Samples were shipped to SiREM in Guelph, Ontario, Canada on May 19, 2014 via FedEx. Three samples were received in one SDG on May 20, 2014 at 2°C, properly preserved, and in good condition. SiREM analyzed the samples for GeneTrac-Dhc and reported the results under work order number S-3215. Upon receipt of result, Ahtna requested additional analysis for vcrA of one sample via email that is not included on the Chain of Custody. Additional results were also reported under S-3215. ADEC does not certify laboratories for Dhc or vcrA analysis.

Samples were hand delivered to TestAmerica in Anchorage on May 9, 2014 immediately after sample collection. One sample and a trip blank were received in one SDG, properly preserved, in good condition, and at a temperature of 15.8°C, outside of the acceptable temperature range. Chilling of the sample commenced after submittal to the laboratory. TestAmerica-Anchorage analyzed samples for DRO and GRO. TestAmerica-Spokane was subcontracted to analyze samples for VOCs. One sample and a trip blank were shipped to TestAmerica-Spokane on May 12, 2014. Samples were received on May 13, 2014 properly preserved, in good condition, and at 5.6 °C. TestAmerica-Anchorage and TestAmerica-Spokane are ADEC-certified laboratories for the analyses performed.

5.6.3 Precision

Precision of analytical data was assessed by calculating the RPD between the primary and duplicate of field samples and laboratory control samples (LCS) and laboratory control sample duplicates (LCSD). Per the approved work plan, field duplicates were only provided for VOC analysis, not the MNA parameters, CSIA, bacteria analysis, or waste characterization.

Sample 14-AREPL-MW60-GW was collected as a duplicate of 14-AREPL-MW6-GW and sample 14-AREPL-MW80-GW was collected as a duplicate of 14-AREPL-MW8-GW. This represents a field duplicate rate of 2 per 13 samples, which meets the data quality objective of 10% for VOCs. RPDs are typically calculated for all detected analytes for the primary and duplicate field sample using the following equation.

EQUATION 5-1: RELATIVE PERCENT DIFFERENCE

RPD (%) = Absolute Value of: $(R_1 - R_2)_{X 100}$ ($(R_{1+} R_2)/2$)

Where R_1 = Sample Concentration R_2 = Field Duplicate Concentration

RPD was only able to be calculated for one of the six VOC analytes, PCE, as shown in Table 5-2. All other analytes were non-detect and RPD could not be calculated. The RPDs for PCE were below the data quality objective of 30% for water samples. No results are qualified due to duplicate precision.

Analyte	Units	14-AREPL- MW6-GW Primary	14-AREPL- MW60-GW Duplicate	RPD ≤ 30	Flag
Tetrachloroethene	ug/l	1600	1700	6	
Analyte	Units	14-AREPL- MW8-GW Primary	14-AREPL- MW80-GW Duplicate	RPD ≤ 30	Flag
Tetrachloroethene	ug/l	0.81	0.82	1	

TABLE 5-2: CALCULATED RELATIVE PERCENT DIFFERENCES

The RPDs for the LCS/LCSD were calculated and reported by OnSite and TestAmerica. All were within laboratory control limits. LCS/LCSD were reported by Pace for CSIA, as QC-1 and QC-2, but no RPD was calculated. LCS was reported by SiREM for Dhc and vcrA as positive control samples, but an LCSD was not reported; therefore RPD could not be calculated.

Site-specific matrix spike (MS) and matrix spike duplicate (MSD) samples were not designed for this project. RPDs for the MS/MSD were calculated and reported by OnSite and TestAmerica. All were within laboratory control limits. MS/MSD were not reported by Pace for CSIA or by SiREM for Dhc and vcrA.

No qualifications are made based on precision.

5.6.4 Accuracy

Accuracy was assessed by calculating the percent recovery for LCS, LCSD, MS, MSD, and surrogates. Surrogate recoveries represent the extraction efficiencies for groups of analytes within a sample. LCS, LCSD, MS, MSD, and surrogate recoveries were reported by OnSite and TestAmerica. All LCS and LCSD recoveries were reported within laboratory control limits. All MS and MSD recoveries were reported within laboratory limits. All surrogate recoveries were reported within laboratory limits with one exception: the surrogate fid was outside acceptable limits for sample 14-AKRE-Cuttings for GRO analysis. This result is flagged "J" as estimated due to QC criteria not being met.

LCS and MS recoveries were reported by SiREM with the notation that laboratory QC criteria had passed. Recoveries were not reported by Pace.

5.6.5 Representativeness

All samples were collected in accordance with the approved work plan. Samples collected are considered representative of site conditions that are being characterized.

5.6.6 Comparability

Samples were submitted to four laboratories, but each for different analyses. There is no comparison possible between laboratories for the same analyses. Samples were not screened or otherwise analyzed prior to laboratory submittal. There is no comparison possible between screening and sample results. Samples have not been consistently sampled over time at the site to provide temporal comparison.

5.6.7 Completeness

All data that were requested were reported. Although LCS, LSCD, MS, MSD, and surrogate data were not reported by Pace and SiREM, standard operating procedures were used for all analyses, and data can be considered complete. No data were rejected; 100% of the results are usable with the applicable qualifications.

5.6.8 Sensitivity

Sensitivity is assessed by ensuring that the limits of detection are less than the project-required goals and that any blank results are less than the PQLs.

There are no project-required goals for the results reported by Pace, SiREM, and TestAmerica. The results reported by OnSite were all less than the project-required goals with three exceptions: the PQL for TCE was greater than the cleanup level for sample 14-AREPL-MW5-GW, 14-AREPL-MW6-GW, and 14-AREPL-MW60-GW. Note that the PQL for some results are the MDL instead of the RL due to the failure to meet the cleanup level. No results are qualified based on the limits of detection.

One trip blank was submitted with water volatile samples (14-AREPL-TB) and one trip blank was submitted with soil volatile samples (14-AKRE-TB). This meets the data quality objective of one per cooler for VOCs. Both trip blanks were analyzed by the same method as the respective project samples. All results in both trip blanks were non-detect and less than the PQL. No qualifiers are necessary based on trip blank results.

Method blanks were reported by OnSite and TestAmerica. The method blanks were reported per matrix, analysis, and 20 samples. All method blank results were non-detect and less than the PQL. No qualifiers are necessary based on method blank results.

Per the approved work plan, equipment blanks and decontamination blanks were not collected for this project.

No results required qualification based on sensitivity.

6.0 CONCEPTUAL SITE MODEL – GROUNDWATER

A conceptual site model (CSM) was prepared as part of the Site Characterization Report prepared by OASIS Environmental, Inc. in 2008 and updated in 2012. Based on the Site Inspection report from February 2013 (E&E, 2013) and the data collected in this report, an updated CSM is provided in the following sections, solely focusing on the groundwater media.

6.1 Sources

Potential sources for the Alaska Real Estate Parking Lot are described in detail in the February 2013 Site Inspection report (E&E, 2013). The sources include a wood crib and associated underground collection sumps located near the former NC Tire Center property, a log crib located near the former C and K Cleaners property, and four buried drums marked for dry cleaning use near the former C and K Cleaners property. Petroleum underground storage tanks and hoists were also located in the area but have been removed and no evidence of petroleum impacts remains. Other sources may have included leaking disposal lines and general housekeeping practices that were common at the time. A secondary source of contamination appears to be PCE-impacted soil in the subsurface at the site.

Evidence found during this focused groundwater characterization indicates that a separate source from the Alaska Real Estate Parking Lot site may be present downgradient of the site. That source is unknown at this time.

6.2 Contaminants of Potential Concern

COPCs based on historic groundwater sampling in the area are VOCs, specifically PCE and TCE. Daughter products cDCE, tDCE, and VC and other VOCs have been found in select areas downgradient, but are not verified to be from the Alaska Real Estate Parking Lot source.

6.3 Potential Migration Pathways

Impacted groundwater has migrated to the northeast and north from the site toward Ingra Street in the upper aquifer that is confined by the Bootlegger Cove clay formation at approximately 50 feet bgs. From groundwater, volatile contamination is likely volatilizing to air (as evidence by air impacts). Sediment samples indicate that there are no impacts from groundwater to the sediment. VOCs are not typically taken up by biota and so uptake by plants or animals is unlikely. There is a data gap as to whether the impacted groundwater is flowing to the Ship Creek surface water body. A surface water body was identified during the 2014 field event and located south of monitoring well 4GMW-14 and within the fenced area of the former Alaska Native Hospital property. This may be groundwater daylighting at the bluff, but remains a data gap as to whether surface water is impacted.

6.4 Potential Exposure Routes

The area of the groundwater plume is located within the municipal drinking water system, and it appears that no private drinking water wells are located in the area (E&E, 2013). Surface water from Ship Creek is not used as a resource for recreation, or for drinking water in the area

downgradient of the site (E&E, 2013). The surface water located south of 4GMW-14 is within a fenced area and not likely used; however, it may be an exposure route to wildlife if impacted.

6.5 Potential Receptors

Due to the lack of exposure routes, it is not likely there are any receptors to impacted groundwater.

7.0 CONCLUSIONS AND RECOMMENDATIONS

Ahtna conducted a focused groundwater characterization of the Alaska Real Estate Parking Lot site for ADEC. The scope of work included installation of four new monitoring wells in the downgradient portion of the plume; decommissioning of four monitoring wells in the source area at the site; sampling 13 monitoring wells for a combination of COPCs, MNA parameters, CSIA, and microbial tracing; and continual measurement of groundwater elevations in the downgradient area.

7.1 Conclusions

The following summarizes the findings of the focused groundwater characterization:

- Groundwater flow direction is variable within the plume. At the site, flow direction was measured to the northeast, which is consistent with historical findings. However, as groundwater reaches the bluff area north of the former Alaska Native Hospital, groundwater flow begins to turn northward. Continual measurements from wells below the bluff show that prevailing groundwater flow direction is westward. The important implication of this is that there is a high potential for another source(s) in the Ship Creek industrial area to contribute to and change the chemical signature of the plume associated with the Alaska Real Estate Parking Lot.
- The monitoring wells at the site have elevated concentrations of PCE with no apparent degradation compounds present. In contrast, the wells at the base of the bluff have little to no measurable PCE and varying ratios of TCE, cDCE, tDCE, and VC concentrations, some of which exceed groundwater cleanup levels. The presence of petroleum hydrocarbons in the downgradient wells also was evident in visual and olfactory observations, although no chemical analysis was performed.
- MNA parameters were measured in two source area wells (MW-5 and MW-6) and two downgradient wells (MW-28 and 4GMW-15). The source area wells do not exhibit conditions indicative of or conducive to biodegradation, and the historically static PCE concentrations in MW-5 and MW-6 support this finding of the MNA parameters. On the other hand, MNA results for MW-28 and 4GMW-15 show the appropriate contrasts compared to background to indicate that biodegradation is likely occurring. These contrasts include elevated ethane and ethene concentrations that indicate complete reductive dechlorination of PCE and vinyl chloride, respectively.
- Microbial analysis of the source area wells MW-5 and MW-6 showed the absence of Dhc bacteria, which indicates that biodegradation is highly unlikely to occur under current conditions. On the other hand, Dhc was found in the downgradient well MW-28. Groundwater from MW-28 also showed the presence of the vcrA gene at a similar concentration as Dhc, which suggests that the Dhc population at MW-28 likely contains the vcrA gene and that complete reductive dechlorination of PCE to ethene is highly possible.
- CSIA results indicate that the PCE in MW-5 and MW-6 is more degraded than the PCE at MW-28 based on isotopic signatures; however, the other lines of evidence (actual PCE concentrations, MNA parameters, microbial analyses) all indicate that degradation is not occurring at an appreciable level in the source area wells while the

same lines of evidence indicate degradation is occurring in MW-28. The most likely explanation for this contradiction in CSIA results is that another source(s) of chlorinated ethenes exists near MW-28. The changing groundwater flow direction from northeast at the site to west at the downgradient wells adds credibility that another source may be contributing the Alaska Real Estate Parking Lot plume in the downgradient area.

7.2 Recommendations

The following highlights recommendations for addressing the groundwater contamination at the Alaska Real Estate Parking Lot site:

- In terms of the downgradient characterization of the groundwater plume, the distal end of the plume remains potentially undefined. Given that groundwater flow is now better understood based on continuous measurements, additional borings and wells west of MW-28 and south of 4GMW-15 and DPB24 should help fill the data gap as to where the plume ends.
- Continue datalogging of groundwater elevations to understand potential seasonal variations in groundwater flow direction.
- Sample potential groundwater seep located within the former Alaska Native Hospital lot south of well 4GMW-14 to evaluate impacts to surface water.
- Perform a thorough data review of historical sampling activities and results of investigations in the Ship Creek area to document potential upgradient sources that are or have contributed to the Alaska Real Estate Parking Lot plume.
- Given the lack of apparent receptors for groundwater contamination, consider developing alternate groundwater cleanup levels per 18 AAC 75.345(b)(2) as part of the remedial strategy.
- Complete the proposed focused feasibility study for the groundwater plume, and implement the preferred remedial alternative(s) to address groundwater contamination.

8.0 REFERENCES

- Alaska Department of Environmental Conservation (ADEC), 2014. Alaska Real Estate Parking Lot, Contaminated Sites Database, access online at http://dec.alaska.gov/Applications/SPAR/CCReports/Site_Report.aspx?Hazard_ID=4084, August 15.
- Ecology and Environment (E&E), 2013. Fourth Avenue and Gambell Parking Lot Site Inspection, Anchorage, Alaska, Contract Number EP-S7-06-02, Technical Direction Document Number 12-01-0004. February.

(This Page Intentionally Left Blank)

TABLES

Table 1: Point Location Data Focused Groundwater Characterization Alaska Real Estate Parking Lot, Anchorage, AK

					Ground	
	Existing?			Well	Elevation	
Well ID	(as of	Northing	Easting	Elevation	Adjacent to	Source of Horizontal Position
	5/23/14)				Well	
BH01GW	NO	2637538.2	1663323.8			Ecology and Environment
BH02GW	NO	2637526.8	1663240.8			Ecology and Environment
BH03GW	NO	2637450.9	1663360.3			Ecology and Environment
BH04GW	NO	2637521.2	1663069.9			Ecology and Environment
BH05GW	NO	2637462.6	1663208.4			Ecology and Environment
BH06GW	NO	2637358.3	1663353.2			Ecology and Environment
BH07GW	NO	2637462.1	1663279.7			Ecology and Environment
BH08GW	NO	2637376.6	1663201.8			Ecology and Environment
BH09GW	NO	2637404.2	1663281.8			Ecology and Environment
BH10GW	NO	2637629.8	1663481.9			Ecology and Environment
BH11GW	NO	2638079.4	1663682.6			Ecology and Environment
BH12GW	NO	2638443.2	1663803.8			Ecology and Environment
BK01GW	NO	2637257.1	1663276.1			Ecology and Environment
DPB24	YES	2638670.3	1663195.7	37.22	37.45	Ahtna Engineering
MW-12S	YES	2638778.7	1663644.9	38.64	38.61	Ahtna Engineering
MW-13	YES	2638757.8	1663767.2			Ahtna Engineering
MW-1	NO	2637460.2	1663239.0	121.29	121.65	Karabelnikoff Surveying
MW-2	NO	2637473.8	1663192.1	120.33	120.35	Karabelnikoff Surveying
MW-3	NO	2637482.5	1663270.1		122.05	Karabelnikoff Surveying
MW-4	NO	2637370.2	1663242.6		121.45	Karabelnikoff Surveying
MW-5	YES	2637537.4	1663288.8	124.97	122.45	Karabelnikoff Surveying
MW-6	YES	2637580.4	1663343.2	124.52	122.15	Karabelnikoff Surveying
MW-7	YES	2637353.8	1663204.7	120.67	121	Karabelnikoff Surveying
MW-8	YES	2637643.6	1663553.0	122.18	122.6	Mammoth Consulting
MW-9	YES	2637523.9	1663604.9	122.61	123	Mammoth Consulting
MW-10	YES	2637527.5	1663747.0	121.04	121.5	Mammoth Consulting
MW-11	NO	2637395.0	1663638.6	121.91	122.3	Mammoth Consulting
4GMW-12	YES	2637984.8	1663885.1	85.44	85.94	Ahtna Engineering
4GMW-13	YES	2638387.3	1663923.6	43.25	43.4	Ahtna Engineering
4GMW-14	YES	2638478.7	1663780.3	39.9	40.23	Ahtna Engineering
4GMW-15	YES	2638690.8	1663501.1	36.76	37.06	Ahtna Engineering
MW-28	YES	2638599.3	1663608.5	40.24	37.35	Karabelnikoff Surveying
EMP-02	NO	2637475.6	1663378.4			Estimated from historic figures
EMP-03	NO	2637374.8	1663421.7			Estimated from historic figures
PENCO MW-1	NO	2638353.3	1663912.9			Estimated from historic figures
PENCO MW-2	NO	2638353.5	1663973.8			Estimated from historic figures
AKRR MW-22	YES	2638758.0	1663044.4			Ahtna Engineering
AKRR MW-24S	YES	2638917.9	1663202.4	32.43	32.64	Karabelnikoff Surveying
AKRR MW-25	YES	2638921.0	1663201.9			Ahtna Engineering
WP 6	NO	2638828.2	1663229.2	35.6	34.5	Karabelnikoff Surveying
WP 8	NO	2637780.1	1663492.0	121.95	120.25	Karabelnikoff Surveying
WP 9 WP 10	NO	2637742.1	1663787.8	121.69 121.81	119.95 120.05	Karabelnikoff Surveying
	NO	2637735.7	1663204.6	121.81	120.05	Karabelnikoff Surveying
WP 11	NO	2637891.4	1663699.8	122.26		Karabelnikoff Surveying
WP 12	NO	2638007.8	1663744.1	_	119.95	Karabelnikoff Surveying
WP 13	NO	2638027.0	1663423.8	121.7	118.65	Karabelnikoff Surveying
WP 14	NO	2638192.8	1663438.3	120.44	118.75	Karabelnikoff Surveying
WP 15	NO	2638055.9	1662832.7	118.69 39.27	116.95 39.6	Karabelnikoff Surveying
MW B 3	NO	2638675.0	1663961.3	39.27	39.0	Karabelnikoff Surveying

Units:

U.S. Survey Feet

Horizontal Datum: NAD83 (2011) Vertical Datum: NAVD88

Coordinate System: Alaska State Plane Zone 4

Note:

Horizontal and Vertical data has been compiled from multiple sources: Ahtna Engineering survey data (2014),

- Ahtna Engineering survey data (2014), collected in May 2014
- Ecology & Environment GPS data (2013), reported in E&E Inspection Report from February 2013
- Mammoth Consulting survey data (2011), reported in OASIS Environmental Report from March 2012
- Karabelnikoff Surveying survey data (2008), reported in CH2M Hill Technical Memorandum from 11/7/08 (Elevation data from Karabelnikoff Surveying was reported in NGS 1972 adjustment of Mean Sea Level Datum.) (A constant offset of 6.05' has been added to 1972 values in attempt to convert those elevations into NAVD88.)

Table 2: ColorTec Screening Results Focused Groundwater Characterization Alaska Real Estate Parking Lot, Anchorage, AK

Borehole ID	Depth (ft bgs)	Color-Tec Reading (ppm)
	18	0
	20	0
4GMW-12	22.5	0
4GWW-12	24.5	0
	27	0
	30	0
	10	0
	13	0
4GMW-13	15	0
	16	3*
	19	0
	10	0
40000444	11	0.5
4GMW-14	13	0
	13.5	0
	6.5	0
4000045	10	0
4GMW-15	11	1
Ī	14	0

Note:

ft bgs = feet below ground surface ppm = parts per million

^{*} This result was not reproducible and may be erroneous.

Table 3: Groundwater Monitoring Results Focused Groundwater Characterization Alaska Real Estate Parking Lot, Anchorage, AK

		Data	T:	Water Level	Total Depth	Temperature	рН	Conductivity	ORP	DO	Turbidity
Sample ID	Area	Date	Time	(ft BTOC)	(ft BTOC)	(°C)	(pH units)	(µS/cm ^{c)}	(mV)	(mg/L)	(NTU)
14-AREPL-MW10-GW	Background	5/15/2014	16:00	42.88	48.50	8.53	6.28	0.995	97.5	11.15	319
14-AREPL-4GMW-12-GW	Boundary	5/14/2014	14:30	18.68	28.57	7.15	7.18	0.611	18.4	0.17	6.32
14-AREPL-4GMW-13-GW	Boundary	5/15/2014	13:00	8.45	12.60	4.59	6.26	0.810	-17.4	0.28	13.9
14-AREPL-DPB24-GW	Boundary	5/14/2014	10:45	6.57	11.82	4.11	6.08	0.606	51.0	0.35	18.0
14-AREPL-MW12S-GW	Boundary	5/13/2014	13:45	6.45	9.35	4.80	6.29	0.208	37.6	2.31	11.9
14-AREPL-MW13-GW	Boundary	5/13/2014	15:30	6.95	9.2	4.71	6.35	0.336	26.6	5.05	5.85
14-AREPL-MW5-GW	Source Area	5/14/2014	17:45	43.26	50.0	9.81	6.56	0.601	66.9	3.16	345
14-AREPL-MW6-GW	Source Area	5/13/2014	17:00	44.0	50.2	7.26	6.40	0.610	160	2.97	21.0
14-AREPL-MW7-GW	Source Area	5/13/2014	10:30	36.7	47.1	8.36	6.55	0.644	221.3	4.15	35.7
14-AREPL-MW8-GW	Dissolved Plume	5/14/2014	12:45	43.57	46.92	7.61	6.32	0.339	131.6	1.00	22.0
14-AREPL-4GMW-14-GW	Downgradient	5/15/2014	14:45	5.84	13.22	6.32	6.60	0.733	-44.7	0.24	107
14-AREPL-MW28-GW	Downgradient	5/14/2014	16:00	8.85	11.17	6.03	6.66	0.601	-9.3	0.48	1.14
14-AREPL-4GMW-15-GW	Downgradient	5/15/2014	10:45	5.20	9.10	6.10	6.36	0.796	-20.3	0.86	12.2

Note:

ft BTOC = feet below top of casing $^{\circ}C$ = degrees Celcius $\mu S/cm^{C}$ = microSiemens per centimeter mV = millivolts mg/L = micrograms per liter NTU = nephelometric turbidity units

Table 4: Groundwater Sampling Results - Contaminants of Concern Focused Groundwater Characterization
Alaska Real Estate Parking Lot, Anchorage, AK

				(cis)	(trans)		
Well ID	Sample ID	Tetrachloroethene	Trichloroethene	1,2-Dichloroethene	1,2-Dichloroethene	1,1-Dichloroethene	Vinyl Chloride
4GMW-12	14-AREPL-4GMW-12-GW	U (0.20)	U (0.20)	U (0.20)	U (0.20)	U (0.20)	U (0.20)
4GMW-13	14-AREPL-4GMW-13-GW	U (0.20)	U (0.20)	U (0.20)	U (0.20)	U (0.20)	U (0.20)
4GMW-14	14-AREPL-4GMW-14-GW	U (0.40)	U (0.40)	81	0.79	U (0.40)	9.8
4GMW-15	14-AREPL-4GMW-15-GW	U (0.20)	0.86	8.9	0.27	U (0.20)	9.6
DPB-24	14-AREPL-DPB24-GW	U (0.20)	U (0.20)	U (0.20)	U (0.20)	U (0.20)	U (0.20)
MW-10	14-AREPL-MW10-GW	U (0.20)	U (0.20)	U (0.20)	U (0.20)	U (0.20)	U (0.20)
MW-12S	14-AREPL-MW12S-GW	U (0.20)	U (0.20)	0.25	U (0.20)	U (0.20)	U (0.20)
MW-13	14-AREPL-MW13-GW	U (0.20)	U (0.20)	0.26	U (0.20)	U (0.20)	U (0.20)
MW-28	14-AREPL-MW28-GW	150	31	310	4.5	U (2.0)	41
MW-5	14-AREPL-MW5-GW	1100	U [5.5]	U (10)	U (10)	U [3.4]	U [3.1]
MW-6	14-AREPL-MW6-GW	1600	U [5.5]	U (10)	U (10)	U [3.4]	U [3.1]
10100-0	14-AREPL-MW60-GW	1700	U [5.5]	U (10)	U (10)	U [3.4]	U [3.1]
MW-7	14-AREPL-MW7-GW	18	U (0.20)	U (0.20)	U (0.20)	U (0.20)	U (0.20)
MW-8	14-AREPL-MW8-GW	0.81	U (0.20)	U (0.20)	U (0.20)	U (0.20)	U (0.20)
IVIVV-O	14-AREPL-MW80-GW	0.82	U (0.20)	U (0.20)	U (0.20)	U (0.20)	U (0.20)
Trip Blank	14-AREPL-TB	U (0.20)	U (0.20)	U (0.20)	U (0.20)	U (0.20)	U (0.20)
	Cleanup Levels	5	5	70	100	7	2

Note:

Samples were collected May 13-15, 2014

Units are micrograms per liter (ug/L)

Cleanup levels are from 18 AAC 75.345 Table C

Data in parentheses are practical quantitation limit (PQL)

Data in brackets are method detection limit (MDL)

Pink highlighting and bold text indicates the result is greater than cleanup level

Purple highlighting indicates the MDL is greater than cleanup level

U - Analyte not detected at the concentration shown

Table 5: Groundwater Sampling Results - Monitored Natural Attenuation Parameters Focused Groundwater Characterization Alaska Real Estate Parking Lot, Anchorage, AK

			Iron	Nitrate+Nitrite	Sulfate	Total Organic Carbon	Methane	Ethane	Ethene
Well ID	Sample ID	Location	(ug/L)	(mg/L)	(mg/L)	(mg/L)	(ug/L)	(ug/L)	(ug/L)
MW-10	14-AREPL-MW10-GW	Background	11000	4.7	29	1.8	0.23	0.0059 J	0.015 J
		Plume wells should be:	Higher	Lower	Lower	High	Higher	Higher	Higher
MW-5	14-AREPL-MW5-GW	Source Area - PCE	8700	5.5	40	1.7	0.25	0.014 J	0.013 J
MW-6	14-AREPL-MW6-GW	Source Area - PCE	1100	4.9	42	1.6	0.026	0.018 J	0.015 J
MW-28	14-AREPL-MW28-GW	Downgradient - PCE, TCE, DCE, VC	170	0.16	46	3.1	260	0.11	4.9
4GMW-15	14-AREPL-4GMW-15-GW	Downgradient - VC	16,000	U (0.050)	U (5.0)	3.1	1300	0.30	6.3

Notes:

ug/L = micrograms per liter

mg/L = milligrams per liter

Green highlighting and bold text indicates the result is greater than cleanup level

J - Estimated concentration greater than the set method detection limit (MDL) and less than the set reporting limit (PQL)

U - Analyte not detected at the concentration shown

Data in parentheses are the PQL

PCE = tetrachloroethene

TCE = trichloroethene

DCE = dichloroethene

VC = vinyl chloride

Table 6: Groundwater Sampling Results - Microbial Analysis Focused Groundwater Characterization Alaska Real Estate Parking Lot, Anchorage, AK

Well ID	Sample ID	SiREM Sample ID	Sample Collection Date	Sample Matrix	Percent Dhc*	Dhc Enumeration/ Liter**	Percent vcrA [^]	vcrA
MW-5	14-AREPL-MW5-GW	DHC-10436	5/14/2014	Groundwater	NA	U (4 X10 ³)	-	-
MW-28	14-AREPL-MW28-GW	DHC-10437	5/14/2014	Groundwater	0.04-0.1 %	1 X10 ⁶	-	-
10100-20	14-ANEFE-WW20-GW	VCR-4886	3/14/2014	Groundwater	•	-	0.01-0.04 %	4 X10 ⁵
MW-6	14-AREPL-MW6-GW	DHC-10438	5/13/2014	Groundwater	NA	U (3 X10 ³)	-	-

Notes:

Dhc = Dehalococcoides vcrA = vinyl chloride reductase A

NA = Not applicable

- = Not analyzed

U = Not detected, associated value is the quantification limit.

- * Percent Dhc in microbial population. This value is calculated by dividing the number of Dhc 16S ribosomal ribonucleic acid (rRNA) gene copies by the total number of bacteria as estimated by the mass of DNA extracted from the sample. Range represents normal variation in Dhc enumeration.
- ** Based on quantification of Dhc 16S rRNA gene copies. Dhc are generally reported to contain one 16S rRNA gene copy per cell; therefore, this number is often interpreted to represent the number of Dhc cells present in the sample.
- ^ Percent vcrA in microbial population. This value is calculated by dividing the number of vcrA gene copies quanitified by the total number of bacteria estimated to be in the sample based on the mass of DNA extracted from the sample. Range represents normal variation in enumeration of vcrA.

Table 7: Groundwater Sampling Results - Compound Specific Isotope Analysis
Focused Groundwater Characterization
Alaska Real Estate Parking Lot, Anchorage, Alaska

Monitoring Well	δ ¹³ C (‰)	δ ³⁷ CI (‰)	Accuracy (± ‰)	PCE (µg/L)	Natural Log of PCE Concentration
MW-5	-34.07	0.4	0.5	1100	7.0
MW-6	-33.79	0.31	0.5	1700	7.4
MW-28	-36.34	-1.21	0.5	150	5.0
4GMW-15	-33.43	0	2	U (0.20)	-

Notes:

 δ^{13} C = relative abundance of two stable isotopes of carbon (13 C and 12 C)

 $\delta^{37}\text{CI}$ = relative abundance of two stable isotopes of chlorine (^{37}CI and ^{35}CI)

% = parts per thousand

PCE = tetrachloroethene

μg/L = micrograms per liter

U = Analyte not detected at the concentration shown in parentheses

- = Not able to be calculated

CHARTS

FIGURES

Prepared by librarn, 8/29/2014; L3

FOCUSED GROUNDWATER CHARACTERIZATION ALASKA REAL ESTATE PARKING LOT, ANCHORAGE, ALASKA

Ahtna Engineering

Project Numbe 20266.008 Date: 7/2/2014 Drafted By:

2

FOCUSED GROUNDWATER CHARACTERIZATION
ALASKA REAL ESTATE PARKING LOT, ANCHORAGE, ALASKA

Ahtna Engineering

3

(This Page Intentionally Left Blank)

APPENDIX A

PERMITS

Alaska Department of Environmental Conservation Contaminated Sites Investigation -2014

Limited Right of Entry for Hazardous Substances Investigation

STATE OF ALASKA

Project Reference: Hazard ID No: 4084 Database Name: Alaska Real Estate Parking Lot

Permission is hereby granted to the STATE OF ALASKA, Department of Environmental Conservation, its contractors, agents and employees, to enter upon our land in and/or in the vicinity of Anchorage Ship Creek RV Park 150 Ingra Street for the purpose of surface and subsurface investigation for hazardous substances.

This permission shall include the right to install a monitoring well and collect groundwater samples from this monitoring well and one historic monitoring well on property.

The State shall take all reasonable precautions to avoid damaging said lands and the appurtenances thereon, and in the event that any damage results from such investigations, the State, by making such entry, agrees to compensate the undersigned for such damage.

Prior to entering upon land pursuant to this Limited Right of Entry, the State or any of its contractors or employees shall (1) notify the undersigned of the time and place of the anticipated entry, and (2) afford the undersigned an opportunity to have one or more of its officials, employees, agents, or attorneys present during such entry.

This permission shall terminate six months from the date of execution of this Limited Right of Entry, unless extended or previously terminated in writing.

Date: 5/2/14	Mailing Address:
By: Signature circle as applicable: property owner operator By: Signature circle as applicable: property owner operator	150 N TIGIA Anchorage AK 9950/ Telephone: 277-0877 Email (b) (6) Address
Printed Name(s)	

POST IN A CONSPICUOUS PLACE ALL WORK MUST BE INSPECTED

Field Inspection Request required 2 working days in advance of starting work and 2 working days in advance for final inspection. Call (907) 343-8206 (voice recorder) for scheduling. Permit is not valid without the call-in and also must include the one-call ticket (utility locate) number.

MUNICIPALITY OF ANCHORAGE RIGHT OF WAY DIVISION 4700 ELMORE ROAD TELEPHONE (907) 343-8240

RIGHT OF WAY PERMIT

R141243

Type: General

SW1232 Grid:

Date Issued: 5/2/2014

Construction Start:

Last Update by: PWDEW

Last Updated: 05/02/2014

Permittee: GEOTEK ALASKA, INC.

Contact Person: Katherine Smith, 569-5900

Primary Inspector:

F.Kelly 343-8436

Site Address: 115 N INGRA ST, Anchorage - @ 1st and 2nd Avenues

Legal Description: EAST ADDITION BLK 46A REM G:1232

Original Work

Description: Placement of two groundwater monitoring wells. One well located on the east side of Ingra Street

near 2nd Avenue, 2' east of paved surface and 30' deep. One well located on the south side of North

Ingra Street near 1st Avenue, 2' south of the paved surface and 20' deep.

Change Orders Summary

CO Date 05/02/2014

CO# R141243 - 1000 **New Work Description**

Change order to extend work dates and include additional monitoring well site. Total of 3

locations: east side of Ingra Street near 2nd Avenue; east side of Ingra Street near 1st Avenue;

south side of North Ingra Street near 1st Avenue.

Most Recent Summary

Work Area

Ingra St @ 1st Ave Ingra St @ 2nd Ave ROW **Boring** Boring None None 5/8/2014 12:00:00AM

5/11/2014 12:00:00AM

North Ingra @ 1st AveROW

Boring

Partial

5/8/2014 12:00:00AM 5/8/2014 12:00:00AM

5/11/2014 12:00:00AM 5/11/2014 12:00:00AM

Financial Summary

Fee Description

QTY

Total Fees:

See reverse for requirements/remarks.

I have read and understand both sides of this permit. I agree to the terms and conditions; and I certify that all work will comply with federal, state, and municipal codes and regulations and the provisions of this permit.

Signature:

Construction Requirements and Notes:

- 1 The permittee shall post a copy of the permit in a conspicuous location at the place to which the permit pertains before any work there is started and shall remove the permit only after the Right of Way Inspector has accepted the work as being in compliance with the permit.
- 2- All construction shall be in accordance of the Municipality of Anchorage Standard Specifications (MASS), 2009 Edition, applicable municipal codes and regulations and the approved drawings and special provisions of this permit.
- 3-Permanent paving, recycled asphalt payment (RAP), chip seal, sidewalks and curb and gutter must be replace within 7 working days after underground work is completed.
- 4 This permit has been issued based on the assumption that the information contained in the plans and supporting information is correct. Any and all omissions are the responsibility of the permittee. Any change in the scope of work requires a revised or new permit and TCP.
- 5 Permittee is responsible for locating and protecting all utilities and survey markers in the work vicinity. For locations, call "Locate Call Center of Alaska", (907) 278-3121 or (800) 478-3121.
- 6 All underground installations within a public place shall be buried at a minimum depth of forty-two inches (42") below the final surface elevation i.e. bottom of drainage ditches, road shoulder, or finished grade.
- 7 The right of way shall be restored to the same, if not better condition, than it was prior to the contractors' work being performed. The work shall be performed vigorously and continuously, until completed to the satisfaction of the Municipal Right of Way Inspector.
- 8 Changes in the approved road closures or scope of work resulting from emergency circumstances may be allowed during construction. It shall be the responsibility of the contractor to notify the Permit Office 343-8206, and/or obtain an approved Traffic Control Plan (TCP). It shall be the contractor's responsibility to notify the following agencies: Fire Dispatch 267-4950, Police Dispatch 786-8900, Alaska State Troopers Dispatch 428-7200, People Mover 343-8253 and School Bus 742-1207 or 742-1209.
- 9 The contractor shall erect signs, barricades and detours in accordance with the U.S. Department of Transportation "Manual on Uniform Traffic Control Devices", Part VI Traffic Controls for Street and Highway Construction, Maintenance, Utility and Emergency Operations. Failure to do so may result in fines being assessed under Title 14 for work not in conformance with a permit.
- 10 The Municipality has the right to inspect and/or reject materials and workmanship not to Municipal standards, to stop work until corrections are made, or to require removal of the facility and to charge time and equipment to the Permittee to correct the facility if they fail to comply with the conditions of the permit.
- 11- Contractors' acceptance of this permit constitutes acceptance of the Municipality's bonding requirements, and is contractor's

MOA RIGHT OF WAY INSPECTION REQUEST LINE 343-8206

Requests must be received 2 working days in advance of starting work and 2 working days in advance for final inspection. Permit is not valid without the call-in and the utility locate number.

Call the voice message system at 343-8206 and give the following information in the order listed below:

- 1. Permit Number
- 2. Contractor Name
- 3. Contact Person
- 4. Phone Number
- 5. Start Date
- 6. Start Time
- 7. Project Location
- 8. Utility Locate Ticket Number

Utility companies (ACS, GCI, ML&P, AWWU, ENSTAR, CEA, MEA, MTA) must notify the Right of Way office a minimum of 24 hours prior of starting work.

Municipality of Anchorage – Right of Way Section Main Phone 343-8240 Fax 343-8250 7:30am – 4:30pm

APPENDIX B

FIELD DATA SHEETS

- B-1 FIELD NOTES
- B-2 BORING LOGS AND WELL COMPLETION LOGS
- B-3 GROUNDWATER SAMPLING DATA SHEETS

Name	Ahtna Er	10	incering	Services
- 10				

Address 110 W. 38th Ave. State 200A

Anchorage, AK 99503 646.2969

Phone ___

Project Alaska Real Estate ADEC

Rite in the Rain - A patented, environmentally responsible, all-weather writing paper that sheds water and enables you to write anywhere, in any weather. Using a pencil or all-weather pen, Rite in the Rain ensures that your notes survive the rigors of the field, regardless of the conditions.

RiteintheRain.com

	COR	NTENTS	
GE	REF	ERENCE	DATE
	GEOTEK Alaska Glenn	569.5900	
	Emerald Alaska Maria	258 · 1 558	
	Ship Creek RV Lot John Saani	277.0877 (b) (6)	
		-	1
		1	
			A Company
		A.	

	tewart Geilich	20266.008 AK Real Estate	5 7 14 50°, Partly Cloudy
1000	Pepart office Will Start by	e for site. I duilling well 46	MW-15 inside
1015	the bounda	ny of Ship Creek eo Tek Maska di	RV Lot.
1010	and Logan.	Discuss plan.	
	Ship Creek	John Saan, the RV Lot to confi	irm access.
	No utilities proposed 46	es designated in	area around
1030	Bauge well	MW-28 on the eter (DTW) is 8.8	corner (stick-up)
	DTW = 6.06	from ground s	
	DTW = 6.55	from Toc ut a	nund surface.
	well.	nly 1-inch diame	
1045		Tec test kit for s	
1100	Daily tail	ealth and safety date meeting wi	hteam.
	waste. se	n for soil auttings tup PlOfor air mo	nitoring.
1115	Begin drill	DT45 tooling. 12	5. Prill down to
	plastic slee	we from 5-10' a	nd 10-15' bas.
	AL B	مرابانا -	Retain the Rain.

2	0. Stewart 20266.008 A. Gevlich AKREAL Estate 5/7/14	O. Stewart 20266.008 5/7/14 A. Geilich AK Real Estate
Cont.	observed by odor * color. (bonny Log) Color Tec screening samples collected	1440 To MW-1 and uncover. PVC full of dikt/bentonite. Dig out around the concrete apron. Remove steel mount. Backfill with native material peagrand
*	10'-1 ppm 14'-0ppm.	1500 To MW-4 and uncover. AVC nearly full of diret/bentonite. Backfill ~30 ft. with
	Set well 4-9 bas (well construction log) screen	bentonite chips hydrated in place. Dig out around the monument and apron. Apronstrangely made of cold patch. Remove
	Labelled non hazardous and placed	Steel mount. 1515 To MW-2 and uncover. PVC nearly full of dirt/bentontte. Backfill ~ 159t with
3 5	Done with well completion and off-site	bentonite chips hydrated in place. Dig out around mount and apron-toron
	Alaska snop.	of cold patch. Remove mount Backfill with native material and the gravel.
1415	Manyer MAN 2 Madde to Vince out	Since no PVC temoved from the ground, no hazardous waste generated. Monuments taken as debris for disposal by Georek.
•	of dirt/bentonite. Fill up remaining ~7 Ft. with bentonite chips hydrated in	1530 Finish up daily quantities with drillers. Off site for the day.
	with native material.	5/1/14
		Rite in the Rain

	tewart Beilich	20266.008 AK Real Estate	5 8 14		O.4	Stewart 20266.008 5.8.14 Geillich AK Real Estate	5
0815	Leave OFF	ce for site.		9 14	H5	Begin drilling 46-MW-14. Drill down to	5'bas.
	neet up u	rith GeoTex duillers G	lenn and Logan			Ricover son from 5-15 bas. unable	to
	check our	t site for well 46 MW	1-12. In front of		L	retrieve soil from 5-10' sample barrel	٠.
	Grubstake Realty driveway. No Utility					Collect from end of barrel. Clay at 13	5
	conflicts					(see bonna (og)	
	Set up col	orter and get drill in	ig situated.			well screen 8-13 000 8.5-13.5'.	
2915	Gothin Di	aily Tailgate Safety I	meeting.	1	030	Finish drilling and setting well. Start	The
0930	Begin dri	lling 4GMW-12. Drill	downto 15'			completions of both wells in flush	
	with no 1	ecovery. Recover 80	oil from 15-20'.			mounts in concrete.	
	water ~1	18' Sample to 30'. H	caving Sands.			All soil cuttings placed in drum Labelled	
	yay tag	ged at 30'. (see born	ing log)			non hazardous and left on sile new	
	will set well	I screen from 29-29	'. (see well			telephone pole on west side of Inc	
	construct			679		at the intersection with 1st/warehous	e.
1300	Jinish W	ell 46/1W-12.				No purge or decon water generated.	
		to 46 MW-13. Set up	on spot			All other 1000 - gloves, paper towels, p	LASTIC
		tilities, but no confi				bags, etc placed in 2 garbage bags.	for
1330	Begin di	illing 46 MW-13. D	nill down to 5'			disposal at Anchorage regional Lan	Afil.
	with no	recovery. Recover	Soil 5 -20'.		700-	Off site for the day.	
	Unable t	o get sleeve from 5	ample				
	barrel f	or 5-10'section. Cal	ect from and				
	of barr	el. clay at 15'. (s	ce boring log).			10 5.8.19	-
	Well sure	n 8.5-13.5 bas.				Ca Kee	
400	Will finis	h mount and concre	te later.			460	
	Move to	46MW-14.			1	V	
	der Sten					D.L.	the Rain

	5/13/ R				12	07	stop purs	. 8	A C	remo	es i f	ron
0930 - arr	ie at 46	MW-12				L	ell.		2"			
- dece	n pump "			ta	121	0.	decon pu		Record	water 1	evel=	Same
	ringe	4.61					as previous	1				
	let. Itaalth t				12	30	Move to	501	veying a	ctivity	4	
2944 - Tak	e water les	cel DI	W= 18.	73 f+		1	ylan Hick	sey-	Survey	data	in.	Sepaca
			atten hall=	70 550			tebook.					-
4	1.82 ft nater	huell,	= 1.67	gollers	150	O .	End su	cvay.	Begin	tevelop.	nest	
	Development to	procens	to 16	7 sallers			- 46 MI					
	which is 11	well	volumes)TW=			7.	22 1	eet
	start purse		140				Tefton					
	stop puge						Pevelopmen		1	1		
	beginning to				150	_	Besins		1			
	rake water le	1792		,		2	Stop pu					
	peing purse u				15	30	leave	200		James		
	ecrive at			4 24		35			well	46 M	15	
		370				43				DTW:		
	plh to water						Ghast					
Ve	oth to botton	11 12	67 17	/ 27/		46	Stop	Purs		Dipotran =		
in	ter in casing =	4.18 11	Well ve	dino: 0.11521		555		, ,	e ste	5.86+	t ingle	r of m
	7.4 Sallons = 1	o well	islanc		16	03	crive			0.65		in ve
	gron pump		4				Stel age	are	na to	J.3 pc	130	
	+ purge +						of PP	E + 1	ige hat	er		
- obse	rue heavy	fuel odo	- sheen	Small			_		H A			
	oplets of fue									1-		

8 ACeil 5 Fe		5/15/14	1111			6
830	calibrate	YSI	1/6/			6
	initial		final			
PH						
7	7.13		7.01			-
4			4.00		+	-
10	10.09		10.06			
en 8	1 2	60		H-P		-
00	1.3 Zz	6 9	1.41	1		-
_						
00			100			
			A. Peci		50	-
011 50	10 51	well A	46 M	W-15		
26			460 M			
1054			Tag VSZ			
744	rollect	Sample	14- AR	PL-46M	W-15-6W	(E
			INA, C			
130	tecon	equipment	change	Glaster,	More	
			1.			
1140		The state of the s	ling busine		rowing	
			f well			- (=
	try	o Move	before e	nd at d	ty-	
1210	Set	up at	well 4	SMW-13		7

1243	begin pursing	w bladter pump
		odor & sheen noted
1310		mple 14-AREPL-46MA43
		ell 46 MW 14
		of other equipment
1400		well 46 Mar Pt
1423	begin Durce	
	heavy fuel	afor 4 product draplets
	observed	
1448	collect sample	14-AREPC-4GMW-14-GW
		equipment.
	~ 4 gallong	prize wher produced
1520	ask for to	nck to be noved off
	Well MW-10	
1530	set up at	MW-10
1550	Begin price	of MW-10 of bladder
	Pump	
1612	collect sample 1	14- AREFL - MW-10-GW
	Secon Paris	ment
1642	drop off	made & PPE at accomulat
	area	
1701	leave site	
		10
		16

Fing	ntna ineering			GROU		ER SAM RM	PLING	PROJECT NUMBER: 20266.0	108	MW-		S	HEET:
ROJECT NAME	AKRI	eal E	State		WEL	L CONDITION	0000	\		IAMETER	0.0.	I.D.	VOLUME (GAL/LIN FT
CLIENT	MUE	· / · / ·				MAGE PRESENT TH TO WATER	don	6		(2")	2.375"	2.067"	0.17
DATE	5/14	///4			(F	FROM TOC)	43,26			3"	3.5 st	3.068"	0.38
SITE	mw-	5			(6	PTH TO BASE FROM TOC)	50,0	·		411	4.5"	4.026"	0.66
GEOLOGIST	Emil	UF	veites)		COLUMN	6.74	1		6"	6.625"	6.065°	1.50
WEATHER/ EMPERATURE	650	Sun	ny		w	ELL VOLUME	1,145	8 gal.		8 ^w	8.625"	7.981"	2.60
WIND	Mant	by D	P2P					1					
SAMPLE TYPE	Iew C I		-		SI	AMPLING DA	TA		-				
PRODUCT, OT	HER):	V		***********									
SAMPLE COLLE WITH:	ECTED	Bailer			V_ Pump	, туре: <u>Ы</u> а	dder	0	ther, Spe	ecify:			
MADE OF	:	- Stainless	Steel	•	PVC			17					
	7	Teflon	Jico.			sable LDPE		0	ther, Spe	ecify:			
SAMPLING DE	CON +	ארמאנא היפוופוו		later .		Subject L				,			
PROCEDUR	6.3												
AMPLE DESCRI	PTION: _C	ear.	NO	odor									
(COID)	-dust		-110	00.0									
thickness, oc	oduct dor,												
	oduct dor,												
thickness, oc	oduct dor,					R QUALITY F	PARAMETERS						
thickness, oc	oduct dor,	Water Level		Temperature (*C)	FIELD WATE	ER QUALITY F D.O. (%)	PARAMETERS D.O. (mg/L)	рН	ORP (mV)	Turbidity (NTU)	Co	olor	Odor
thickness, oc turbidity)	Flow Rate (mL/min)	Water Level	Draw Down	Temperature (°C)	Spec. Cond. (μS/cm) ^c	D.O.	D.O. (mg/L)	рн 6 9 0		(NTU) 364	910	=(/	Odor No
Time	Flow Rate (mt/min)	Water Level 47.28 43.28	Draw Down 0.07 0.02	Temperature (°C)	Spec. Cond. (μS/cm) ^c 0.56.7	D.O. (%) 25.5 26.3	D.O. (mg/L)		(mV)	(NTU) 364 413	Sie	ar	Α7
thickness, oc turbidity)	Flow Rate (mL/min)	Water Level 47.28 47.28	Draw Down 0.02 0.02 0.02	Temperature (°C) 11 28 10 35 9 48	Spec. Cond. (μ\$/cm) ^c 0.56.7 0.5.84 0.59.3	25.5 26.3 27.5	D.O. (mg/l) 2.80 2.94 3.10	690 664 660	(mV) 285 47.1 57.1	(NTU) 364 413 284	CIE	ar	Α7
thickness, or turbidity	Flow Rate (mt/min)	Water Level 47.28 43.28	Draw Down 0.02 0.02 0.02	Temperature (°C)	Spec. Cond. (μS/cm) ^c 0.56.7	D.O. (%) 25.5 26.3	D.O. (mg/L)	690	(mV)	(NTU) 364 413	CIE	ar	Α7
Time	Flow Rate (mL/min)	Water Level 47.28 47.28	Draw Down 0.02 0.02 0.02	Temperature (°C) 11 28 10 35 9 48	Spec. Cond. (μ\$/cm) ^c 0.56.7 0.5.84 0.59.3	25.5 26.3 27.5	D.O. (mg/l) 2.80 2.94 3.10	690 664 660	(mV) 285 47.1 57.1	(NTU) 364 413 284	CIE	ar	Α7
Time	Flow Rate (mL/min)	Water Level 47.28 47.28	Draw Down 0.02 0.02 0.02	Temperature (°C) 11 28 10 35 9 48	Spec. Cond. (μ\$/cm) ^c 0.56.7 0.5.84 0.59.3	25.5 26.3 27.5	D.O. (mg/l) 2.80 2.94 3.10	690 664 660	(mV) 285 47.1 57.1	(NTU) 364 413 284	CIE	ar	Α7
Time	Flow Rate (mL/min)	Water Level 47.28 47.28	Draw Down 0.02 0.02 0.02	Temperature (°C) 11 28 10 35 9 48	Spec. Cond. (μ\$/cm) ^c 0.56.7 0.5.84 0.59.3	25.5 26.3 27.5	D.O. (mg/l) 2.80 2.94 3.10	690 664 660	(mV) 285 47.1 57.1	(NTU) 364 413 284	CIE	ar	Α7
Time	Flow Rate (mL/min)	Water Level 47.28 47.28	Draw Down 0.02 0.02 0.02	Temperature (°C) 11 28 10 35 9 48	Spec. Cond. (μ\$/cm) ^c 0.56.7 0.5.84 0.59.3	25.5 26.3 27.5	D.O. (mg/l) 2.80 2.94 3.10	690 664 660	(mV) 285 47.1 57.1	(NTU) 364 413 284	CIE	ar	No.
Time	Flow Rate (mL/min)	Water Level 47.28 47.28	Draw Down 0.02 0.02 0.02	Temperature (°C) 11 28 10 35 9 48	Spec. Cond. (μ\$/cm) ^c 0.56.7 0.5.84 0.59.3	25.5 26.3 27.5	D.O. (mg/l) 2.80 2.94 3.10	690 664 660	(mV) 285 47.1 57.1	(NTU) 364 413 284	CIE	ar	Α7
Time	Flow Rate (mL/min)	Water Level 47.28 47.28	Draw Down 0.02 0.02 0.02	Temperature (°C) 11 28 10 35 9 48	Spec. Cond. (µS/cm) ^c 0.56.7 0.584 0.593 0.601	25.5 26.3 27.5	D.O. (mg/L) 2.80 2.94 3.10	690 664 660	(mV) 285 47.1 57.1	(NTU) 364 413 284	CIE	ar	No
Time 1138 1743 1748	Flow Rate (mL/min)	Water Level 47.28 47.28	Draw Down 0.02 0.02 0.02 0.02	Temperature (°C) 11-28 10-35 9-99 9-81	Spec. Cond. (µS/cm) ^c 0.56.7 0.584 0.593 0.601	0.0. (%) 25.5 76 3 27.5 28.0	D.O. (mg/L) 2. 80 2. 94 3.10 3.16	690 664 660 656	(mv) 285 471 571 66.9	(NTU) 364 413 284	CIE	ar	No
Time 1138 1743 1748 1753	Flow Rate (ml/min) 300 300 300	Water Level 47.28 47.28	Draw Down 0.02 0.02 0.02	Temperature (°C) 11-28 10-35 9-99 9-81	Spec. Cond. (µS/cm) ^c 0.56.7 0.584 0.593 0.601	D.O. (%) 25.5 76.3 27.5 28.0	D.O. (mg/L) 2.80 2.94 3.10 3.16 FORMATION	690 664 660 656	(mV) 285 47.1 57.1	(NTU) 364 4/3 3/45 Sampling	CIE CIE CIE	av cw	<i>N</i> ∘
Time 1738 1743 1748 1753	Flow Rate (mL/min) 300 300 300 300	Water Level 47.28 47.28	Draw Down 0.02 0.02 0.02 0.02	Temperature (°C) 11 28 10 35 9 9 8 1	Spec. Cond. (µS/cm) ^c 0.56.7 0.584 0.593 0.601	D.O. (%) 25.5 76.3 27.5 28.0	D.O. (mg/L) 2.80 2.94 3.10 3.16 FORMATION	690 664 660 656	(mv) 285 471 571 66.9	(NTU) 364 4/3 3/45 Sampling	CIE CIE CIE	av cw	\(\sqrt{\chi} \)
Time 1738 1743 1748 1753	Flow Rate (ml/min) 300 300 300	Water Level 47.28 47.28	Draw Down 0.02 0.02 0.02 0.02	Temperature (°C) 11 28 10 35 9 9 8 1	Spec. Cond. (µS/cm) ^c 0.56.7 0.584 0.593 0.601	D.O. (%) 25.5 76.3 27.5 28.0	D.O. (mg/L) 2.80 2.94 3.10 3.16 FORMATION	690 664 660 656	(mv) 285 471 571 66.9	(NTU) 364 4/3 3/45 Sampling	CIE CIE CIE	av cw	\(\sqrt{\chi} \)
thickness, or turbidity) Time 1738 1743 1748 1753	Flow Rate (ml/min) 300 300 300 300 300 300 300 300 300 30	Water Level 47.28 47.28 43.28 43.28 45.28	Draw Down 0.02 0.02 0.02 0.02 0.02 0.02 0.02	Temperature (°C) 11 28 10 35 9 9 8 1	Spec. Cond. (µS/cm) ^c 0.56.7 0.584 0.593 0.601 ANALYTICA -GW -GW	D.O. (%) 25.5 76.3 27.5 28.0	D.O. (mg/L) 2.80 2.94 3.10 3.16 FORMATION	690 664 660 656	(mv) 285 471 571 66.9	(NTU) 364 4/3 3/45 Sampling	CIE	av cw	No.

- CIL	atno			GROL	JNDWA	TER SAM	IPLING	PROJE	1	WELL NUM	BER:		SHEET:
Eng	ineering					DRM		20266		nwb		1	of i
PROJECT NAME	Alaska	Redl	Esto	He	w	ELL CONDITION	9000			NOMINAL DIAMETER	O.D.	I.D.	VOLUME (GAL/LIN FT)
CLIENT	ADEC						PAIN 1	W.	,1110	(2")	2.375"	2.067"	0.17
DATE	05/13/1	4				FROM TOC)	1- HONON	Cerox	00	3"	3.5°	3.068"	0.38
SITE	mw-6)			C	(FROM TOC)	50,2			4"	4.5"	4.026"	0.66
GEOLOGIST	Emile	1 F	reite	iS	HE	IGHT OF WATER COLUMN	6.2			6ª	6.625™	6.065"	1.50
WEATHER/ TEMPERATURE	(00°, 50	MNU				WELL VOLUME	1,054	aul	cns	8"	8.625"	7.981"	2.60
WIND	No N	ronn						-1-					
SAMPLE TYPE	IGW.					AMPLING DA	TA						
PRODUCT, OT	THER): GV	<u> </u>				01	41						
SAMPLE COLL WITH:		Bailer			Pum	p, Type: <u></u>	agger		Other, Sp	ecify:			
MADE O	F: X	Stainless S	Steel		PVC								
	X	Teflon			Disp	osable LDPE		_	Other, S	ecify:			
SAMPLING D PROCEDU	ECON RE:A\	(onox	1 V	vater					_				
SAMPLE DESCR	IPTION: 5	iant	oder	r, cle	ar								
(color, free pr		J											
turbidity	1)												
	-											-	
					FIELD WAT	ER QUALITY P	ARAMETERS						
Time	Flow Rate	Water Level	Draw Down	Temperature	Spec. Cond.	D.O.	D.O.	рН	ORP (mV)	Turbidity (NTU)	Cole	or	Odor
11045	(mL/min) 980	43.65	.55	Temperature (°C)		5.0. (%)	D.O. (mg/L)	4.31	(mV)	(NTU)	Cleo	IV	Odor Yes
1645	(mL/min) (mL	43.65	.55 208	9.10 7.41	Spec. Cond. (µS/cm) ^c (pS/cm) O	5.0. (%) 3419 34.8	D.O. (mg/L) 4.07		(mV) 139.9 187	(NTU) 146 717	Clea	ar	
11045	(mt/min) うちつ うも0 以り0	43.65	.55	Same and	Spec. Cond. (μS/cm) ^c	5.0. (%)	D.O. (mg/L)	4.31	(mV)	(NTU)	Cleo	ar ar	
1645 1650 1654 (CHO)	(mt/min) 580 400 400 4(10	43.65 43.6 43.6 43.6 43.0	.55 80.3 60.3	7.53 7.32 7.25	Spec. Cond. (μs/cm) ^c (μs/cm) ^c (μη	0.0. (%) 3419 21.8 26.3 25.6 24.0	0.0. (mg/l) 4.07 3.35 3.15 3.07 2.89	6.19	(mV) 139.9 187 178 164 162	(NTU) 146 71.7 67.1 44.2 31.2	Clea	ar ar w	
1645 1650 1654 1701 1701	(mt/min) 587 530 400 400 400 400	43.65 43.6 43.6 43.6 43.0 43.0	·55	7.53 7.32 7.25 7.126	Spec. Cond. (μS/cm) ^c	24.0 24.3 24.3	0.0. (mg/L) 4.07 3.35 3.15 3.07 2.89 3.00	6.20	(mv) 1399 187 178 164 162 162	(NTU) 146 147 611 44,2 312 25.6	Clear Clear	ar ar ar	
1645 1650 1654 (200)	(mt/min) 587 530 400 400 400 400	43.65 43.6 43.6 43.6 43.8	.55 80.3 60.3	7.53 7.32 7.25	Spec. Cond. (μs/cm) ^c (μs/cm) ^c (μη	0.0. (%) 3419 21.8 26.3 25.6 24.0	D.O. (mg/L) 4.07 3.35 3.15 3.07 2.89	6.19	(mV) 139.9 187 178 164 162	(NTU) 146 71.7 67.1 44.2 31.2	Clea	ar ar ar	
1645 1650 1654 1701 1701	(mt/min) 587 530 400 400 400 400	43.65 43.6 43.6 43.6 43.0 43.0	·55	7.53 7.32 7.25 7.126	Spec. Cond. (μS/cm) ^c	24.0 24.3 24.3	0.0. (mg/L) 4.07 3.35 3.15 3.07 2.89 3.00	6.20	(mv) 1399 187 178 164 162 162	(NTU) 146 147 611 44,2 312 25.6	Clear Clear	ar ar ar	
16 45 1650 1654 1701 1701 1704 1708	(mt/min) 587 530 400 400 400 400	43.65 43.6 43.6 43.6 43.0 43.0	·55	7.53 7.32 7.25 7.126	Spec. Cond. (μS/cm) ^c	24.0 24.3 24.3	0.0. (mg/L) 4.07 3.35 3.15 3.07 2.89 3.00	6.20	(mv) 1399 187 178 164 162 162	(NTU) 146 147 611 44,2 312 25.6	Clear Clear	ar ar ar	
1645 1650 1654 1701 1701	(mt/min) 587 530 400 400 400 400	43.65 43.6 43.6 43.6 43.0 43.0	·55	7.53 7.32 7.25 7.126	Spec. Cond. (μS/cm) ^c	24.0 24.3 24.3	0.0. (mg/L) 4.07 3.35 3.15 3.07 2.89 3.00	6.20	(mv) 1399 187 178 164 162 162	(NTU) 146 147 611 44,2 312 25.6	Clear Clear	ar ar ar	yes
16 45 1650 1654 1701 1701 1704 1708	(mt/min) 587 530 400 400 400 400	43.65 43.6 43.6 43.6 43.0 43.0	·55	7.53 7.32 7.25 7.126	Spec. Cond. (μS/cm) ^c 1590 1614 1617 1604 1610	24.0 24.3 24.3	D.O. (mg/L) 4.07 3.35 3.15 3.07 2.89 3.00 2.97	6.20	(mv) 1399 187 178 164 162 162	(NTU) 146 147 611 44,2 312 25.6	Clear Clear	ar ar ar	yes
16 45 1650 1654 1701 1701 1704 1708	(mt/min) 587 530 400 400 400 400	43.65 43.6 43.6 43.6 43.0 43.0	·55	7.53 7.32 7.15 7.26 7.26	Spec. Cond. (μS/cm) ^c 1590 1614 1617 1604 1610	0.0. (%) 7419 21. 8 26.3 25.6 24.0 24.3 24.5	D.O. (mg/L) 4.07 3.35 3.15 3.07 2.89 3.00 2.97	6.40	(mv) 1399 187 178 164 162 162	(NTU) 144 177 44,2 31.2 25.6 21,0	Clear	ar ar ar	yes
10 45 1050 1654 1301 1304 1304 1308	(mt/min) (787) 530 400 400 400 400	43.65 43.6 43.6 43.6 43.0 43.0	SS	7.53 7.32 7.15 7.26 7.26	Spec. Cond. (μS/cm) ^c	0.0. (%) 7419 21. 8 26.3 25.6 24.0 24.3 24.5	D.O. (mg/L) H.O.T. 3.35 3.15 3.07 2.89 3.00 2.97	6.20 6.40	(mv) 13919 187 178 164 162 162 160	(NTU) 144 177 (14,2 31.2 25.6 21,0	Clear	ar ar ar	yes
110 45 1050 1654 1301 1304 1308 1308 4nalyte VOC 1	(mt/min) (787) 780 (400) 4(10)	43.65 45.6 45.6 43.6 43.0 43.6 43.6	SS	1.41 7.53 1.32 1.15 1.26 1.26 1.26	Spec. Cond. (µS/cm) ^S 1590 1614 1617 1604 1610 ANALYTICA	0.0. (%) 3419 21. 8 26.3 25.6 24.0 24.5 AL SAMPLE IN	D.O. (mg/L) H.O.T. 3.35 3.15 3.07 2.89 3.00 2.97	6.20 6.40	(mv) 139.9 187 178 164 162 160	(NTU) 194 71.7 (-7.1 44.2 31.2 25.6 21.0	Clear	ar ar ar ar	yes
110 45 1050 1654 1301 1304 1308 1308 1308 1308 1308 1308 1308 1308	(mt/min) (787) 7870 400 400 400 400 400 Time	43.65 45.6 45.6 43.6 43.0 43.6 43.6	SS	7.53 7.132 7.132 7.132 7.126 7.26	Spec. Cond. (µS/cm) ^S 1590 1614 1617 1604 1610 ANALYTICA	0.0. (%) 3419 21. 8 26.3 25.6 24.0 24.5 AL SAMPLE IN	D.O. (mg/L) H.O.T. 3.35 3.15 3.07 2.89 3.00 2.97	6.20 6.40	(mv) 139.9 187 178 164 162 160	(NTU) 194 71.7 (-7.1 44.2 31.2 25.6 21.0	Clear	ar ar ar ar	yes
110 45 1050 1654 1301 1304 1308 1308 4nalyte VOC 1	(mt/min) (787) 780 (400) 4(10)	43.65 45.6 45.6 43.6 43.0 43.6 43.6	SS	1.41 7.53 1.32 1.15 1.26 1.26 1.26	Spec. Cond. (µS/cm) ^S 1590 1614 1617 1604 1610 ANALYTICA	0.0. (%) 3419 21. 8 26.3 25.6 24.0 24.5 AL SAMPLE IN	D.O. (mg/L) H.O.T. 3.35 3.15 3.07 2.89 3.00 2.97	6.20 6.40	(mv) 139.9 187 178 164 162 160	(NTU) 194 71.7 (-7.1 44.2 31.2 25.6 21.0	Clear	ar ar ar ar	yes

A	ntna			GROU		TER SAM	IPLING	PROJE	ER:	VELL NUN		s	HEET:
/ Eng	ineering	10		1. 10 1		DRM		20266.	000	NOMINAL			VOLUME
ROJECT NAME	Alaska	Kfall	state k	arking Lo) t we	ELL CONDITION	9000			NAMETER	O.D.	I.D.	(GAL/LIN FT)
CLIENT	ADEC			0		MAGE PRESENT	none			(2")	2.375"	2.067"	0.17
DATE	5 13 13					PTH TO WATER (FROM TOC)	36.71			3"	3.5"	3.068"	0.38
SITE	mw-7					EPTH TO BASE (FROM TOC)	47.1'			4"	4.5*	4.026"	0.66
GEOLOGIST	E'm	ilu	Freit	as	HEI	GHT OF WATER COLUMN	10,4'			6"	6.625"	6.065"	1.50
WEATHER/ EMPERATURE	420 (1161 (a.	st		v	VELL VOLUME	1,768	acl.		8"	8.625"	7.981"	2.60
WIND	None ,	1110						4					
					S	AMPLING DA	TA	-					
PRODUCT, OT		W											
AMPLE COLLI WITH:	ECTED	Bailer			V Pum	p, Type: Ott	Bladder	•	Other, Sp	ecify:			
MADE OF	 F:	- Stainless	Stool		PVC					•			
	-	Teflon B				osable LDPE			Other, Sp	ocifu			
	-	-		6./	Dispo	osable LUPE		_	Other, sp	ecny.			
SAMPLING DI	RE: A	1 conc	Y+ W	akr			1	1				1.1	
PROCEDUR							101010.	1000	CI IOO !	$-r \Lambda \eta$	Ω.	αm	~ 100
PROCEDUE	IPTION: S	ightle	1 tur	hid y	10 00	ov.	Water	UYU	ame	VIE	ar	dul	1110
PROCEDUR AMPLE DESCRI (color, free pro thickness, o	iPTION: S	igntlu urain	1.	hid, r	no od	lov.	MARN	UYU	ame	Vie	ur	Oywi	TIVIO
PROCEDUR	iPTION: S		1.	hid, r	<u>10 od</u>	lov.	MAHA	UKU	ame	VIL	ur	Oyun	1410
PROCEDUR MPLE DESCRI (color, free pro thickness, o	iPTION: S		1.	hid, r		ER QUALITY F			ame	- Ve	ur	- Oywi	
PROCEDUR MPLE DESCRI (color, free pro thickness, o	roduct dor,		4	Temperature	FIELD WAT	ER QUALITY P	PARAMETERS		ORP	Turbidity		Hor	Odor
PROCEDUR MPLE DESCRI (color, free pri thickness, or turbidity Time	aption: S	nydiu	4		FIELD WAT	ER QUALITY F	PARAMETERS					Hor	
MPLE DESCRICTION free protection free protecti	Flow Rate (mL/min)	Water Level	Draw Down	Temperature (°C) 8.10 \ 8.43	FIELD WAT Spec. Cond. (μS/cm) ^c , (cond.) (μS/cm) ^c , (cond.)	ER QUALITY F D.O. (%) 34,5 34,6	D.O. (mg/L)	рн 16-41	ORP (mV) 216.8	Turbidity (NTU) 227 142	C 190	Hor ÜV	Odor NO
AMPLE DESCRI (color, free pri thickness, or turbidity	Flow Rate (mL/min)	Water Level 37. 15 31.15	Draw Down	Temperature (°c) \$.\(\oldsymbol{0}\) \$.\(\oldsymbol{3}\) \$.\(\oldsymbol{3}\) \$.\(\oldsymbol{3}\)	FIELD WAT Spec. Cond. (µ5/cm) ⁵	ER QUALITY F D.O. (%) 34,5 34,8 35,3	D.O. (mg/t)	pH 10.41 10.48 6.52	ORP (mV) 216.8 218.6 219.8	Turbidity (NTU) 227 142 89.1	C 190	Hor GV	Odor NO NO
AMPLE DESCRI (color, free pri thickness, on turbidity	Flow Rate (mL/min) 430 240 210	Water Level 37. 1 5 31.15 31.13	Draw Down . 4 . 4 . 5 . 4 . 2 . 4 1	Temperature (°c) \$.60 \$.43 \$.43 \$.38	FIELD WAT Spec. Cond. (µS/cm) ^c	ER QUALITY F D.O. (%) 34,6 34,8 35,3	D.O. (mg/t)	рн 16-41 16-48 16-52 16-55	ORP (mV) 218,6 218,6 219,8 220,4	Turbidity (NTU) 227 142 81.1 55.8	C 190 C 190 C 190	ilor il V il V il V il V	Odor NO NO NO
MPLE DESCRI (color, free pri thickness, o turbidity	Flow Rate (mL/min)	Water Level 37. 15 31.15	Draw Down	Temperature (°c) \$.43 8.43 8.43	FIELD WAT Spec. Cond. (µ5/cm) ⁵	ER QUALITY F D.O. (%) 34,5 34,8 35,3	D.O. (mg/t)	pH 10.41 10.48 6.52	ORP (mV) 216.8 218.6 219.8	Turbidity (NTU) 227 142 89.1	C 180 C 180 C 180 C 180	Hor BY BY Our Ur Ear	Odor NO NO
MPLE DESCRICTION free protein thickness, on turbidity Time U14 020 034 038	Flow Rate (mL/min) 4 30 240 240	Water Level 37.1 5 31.1 37.11 37.11	Draw Down	Temperature (*c) \$.43 \$.43 \$.38 \$.38	FIELD WAT Spec. Cond. (µS/cm) ^c	ER QUALITY F D.O. (%) 34, 6 34, 6 35, 3 35, 3 35, 4	D.O. (mg/L) 14.07 14.15 14.13	рн 16-41 16-48 6-52 16-55 16-55	ORP (mV) 2\6.8 2\8,6 2\9,8 2\20.4 2\2\1,3	Turbidity (NTU) 227 142 89.1 55.8	C 180 C 180 C 180 C 180	Hor BY BY Our Ur Ear	Odor NO NO NO NO NO
AMPLE DESCRI (color, free pri thickness, o turbidity	Flow Rate (mL/min) 4 30 240 240	Water Level 37.1 5 31.1 37.11 37.11	Draw Down	Temperature (*c) \$.43 \$.43 \$.38 \$.38	FIELD WAT Spec. Cond. (µS/cm) ^c	ER QUALITY F D.O. (%) 34, 6 34, 6 35, 3 35, 3 35, 4	D.O. (mg/L) 14.07 14.15 14.13	рн 16-41 16-48 6-52 16-55 16-55	ORP (mV) 2\6.8 2\8,6 2\9,8 2\20.4 2\2\1,3	Turbidity (NTU) 227 142 89.1 55.8	C 180 C 180 C 180 C 180	Hor BY BY Our Ur Ear	Odor NO NO NO NO NO
AMPLE DESCRI (color, free pri thickness, o turbidity	Flow Rate (mL/min) 4 30 240 240	Water Level 37.1 5 31.1 37.11 37.11	Draw Down	Temperature (*c) \$.43 \$.43 \$.38 \$.38	FIELD WAT Spec. Cond. (µS/cm) ^c	ER QUALITY F D.O. (%) 34, 6 34, 6 35, 3 35, 3 35, 4	D.O. (mg/L) 14.07 14.15 14.13	рн 16-41 16-48 6-52 16-55 16-55	ORP (mV) 2\6.8 2\8,6 2\9,8 2\20.4 2\2\1,3	Turbidity (NTU) 227 142 89.1 55.8	C 180 C 180 C 180 C 180	Hor BY BY Our Ur Ear	Odor NO NO NO NO NO
AMPLE DESCRI (color, free pri thickness, o turbidity	Flow Rate (mL/min) 4 30 240 240	Water Level 37.1 5 31.1 37.11 37.11	Draw Down	Temperature (*c) \$.43 \$.43 \$.38 \$.38	FIELD WAT Spec. Cond. (µS/cm) ^c	ER QUALITY F D.O. (%) 34, 6 34, 6 35, 3 35, 3 35, 4	D.O. (mg/L) 14.07 14.15 14.13	рн 16-41 16-48 6-52 16-55 16-55	ORP (mV) 2\6.8 2\8,6 2\9,8 2\20.4 2\2\1,3	Turbidity (NTU) 227 142 89.1 55.8	C 180 C 180 C 180 C 180	Hor BY BY Our Ur Ear	Odor NO NO NO NO NO
AMPLE DESCRI (color, free pri thickness, o turbidity	Flow Rate (mL/min) 4 30 240 240	Water Level 37.1 5 31.1 37.11 37.11	Draw Down	Temperature (*c) \$.43 \$.43 \$.38 \$.38	FIELD WAT Spec. Cond. (µS/cm) ^c , & 0.025/100 0.023/100 0.023/100 0.042 0.042	ER QUALITY F D.O. (%) 34, 6 34, 6 35, 3 35, 3 35, 4	D.O. (mg/t) 4.15 4.15 4.15	pH 10-41 10-43 10-52 10-55 10-55 10-55	ORP (mV) 2\6.8 2\8,6 2\9,8 2\20.4 2\2\1,3	Turbidity (NTU) 227 142 89.1 55.8	C 180 C 180 C 180 C 180	Hor BY BY Our Ur Ear	Odor NO NO NO NO NO
PROCEDURA AMPLE DESCRI (color, free pr thickness, o turbidity Time 10 24 10 24 10 3 4 10 3 8 10 42	Flow Rate (mL/min) 4 30 240 240	Water Level 37.1 5 31.1 37.11 37.11	Draw Down	Temperature (°c) \$.6\ \$.43 \$.43 \$.38 \$.38	FIELD WAT Spec. Cond. (µS/cm) ^c , & 0.025/100 0.023/100 0.023/100 0.042 0.042	D.O. (%) 34,5 34,5 34,8 35,3 35,4 35,4	D.O. (mg/t) U.O. U.O.	pH 6.4 6.48 6.52 6.55 6.55 6.55	ORP (mV) 218.6 218.6 249.8 220.4 271.3 221.0	Turbidity (NTU) A 3 7 14 2 89.1 55.8 46.2 35.7	C LPC C LPC	Hor av av ar ear	Odor NO NO NO NO NO
AMPLE DESCRI (color, free prothickness, on turbidity) Time 10 14 10 20 10 31 10 38 10 42 Analyte	Flow Rate (mL/min) 1 10 240 240 240	Water Level 37. 1 31.15 31.11 31.11	Draw Down	Temperature (°C) \$ (a) \$ 4 3 \$ 4 3 \$ 3 8 \$ 3 8 \$ 3 8 \$ 3 6	FIELD WAT Spec. Cond. (µS/cm) ^c & O(25/AVX O(25/AVX O(25/AVX O(24)	ER QUALITY F D.O. (%) 34,5 34,6 35,3 35,3 35,4 35,4 AL SAMPLE IN Additional Sal	PARAMETERS D.O. (mg/t) 1.17 1.15 4.15 4.13 4.14 4.15 FORMATION mple Time	pH 6.4 6.48 6.52 6.55 6.55 6.55	ORP (mV) 2\6.8 2\8,6 2\9,8 2\20.4 2\2\1,3	Turbidity (NTU) A 3 7 14 2 89.1 55.8 46.2 35.7	C LPC C LPC	Hor av av ar ear	Odor NO NO NO NO NO
AMPLE DESCRI (color, free pri thickness, on turbidity Time 10 14 10 20 10 31 10 33 10 42 10 42 10 42	Flow Rate (mL/min) 4 30 240 240	Water Level 37. 1 31.15 31.11 31.11	Draw Down	Temperature (°c) \$.6\ \$.43 \$.43 \$.38 \$.38	FIELD WAT Spec. Cond. (µS/cm) ^c & O(25/AVX O(25/AVX O(25/AVX O(24)	D.O. (%) 34,5 34,5 34,8 35,3 35,4 35,4	PARAMETERS D.O. (mg/t) 1.17 1.15 4.15 4.13 4.14 4.15 FORMATION mple Time	pH 6.4 6.48 6.52 6.55 6.55 6.55	ORP (mV) 218.6 218.6 249.8 220.4 271.3 221.0	Turbidity (NTU) 227 142 89.1 55.8 46.2 35,7	C LPC C LPC	Hor av av ar ear	Odor NO NO NO NO NO
AMPLE DESCRI (color, free prothickness, on turbidity) Time 10 14 10 20 10 31 10 38 10 42 Analyte	Flow Rate (mL/min) 1 10 240 240 240	Water Level 37. 1 31.15 31.11 31.11	Draw Down	Temperature (°C) \$ (a) \$ 4 3 \$ 4 3 \$ 3 8 \$ 3 8 \$ 3 8 \$ 3 6	FIELD WAT Spec. Cond. (µS/cm) ^c & O(25/AVX O(25/AVX O(25/AVX O(24)	ER QUALITY F D.O. (%) 34,5 34,6 35,3 35,3 35,4 35,4 AL SAMPLE IN Additional Sal	PARAMETERS D.O. (mg/t) 1.17 1.15 4.15 4.13 4.14 4.15 FORMATION mple Time	pH 6.4 6.48 6.52 6.55 6.55 6.55	ORP (mV) 218.6 218.6 249.8 220.4 271.3 221.0	Turbidity (NTU) A 3 7 14 2 89.1 55.8 46.2 35.7	C LPC C LPC	Hor av av ar ear	Odor NO NO NO NO NO
AMPLE DESCRI (color, free pri thickness, or turbidity Time 10 20 10 3 1 10 3 8 10 42 Analyte VOC Dhc	Flow Rate (mL/min) 1 10 240 240 240	Water Level 37. 1 31.15 31.11 31.11	Draw Down	Temperature (°C) \$ (a) \$ 4 3 \$ 4 3 \$ 3 8 \$ 3 8 \$ 3 8 \$ 3 6	FIELD WAT Spec. Cond. (µS/cm) ^c & O(25/AVX O(25/AVX O(25/AVX O(24)	ER QUALITY F D.O. (%) 34,5 34,6 35,3 35,3 35,4 35,4 AL SAMPLE IN Additional Sal	PARAMETERS D.O. (mg/t) 1.17 1.15 4.15 4.13 4.14 4.15 FORMATION mple Time	pH 6.4 6.48 6.52 6.55 6.55 6.55	ORP (mV) 218.6 218.6 249.8 220.4 271.3 221.0	Turbidity (NTU) A 3 7 14 2 89.1 55.8 46.2 35.7	C LPC C LPC	Hor av av ar ear	Odor NO NO NO NO NO

	atno			GROU	NDWA	TER SAN	/IPLING	PROJEC	ER.	WELL NUM	,		SHEET:
Eng	ineering				FO	RM		20266.	11	JW 8	2	(of
PROJECT NAME	AKR	eal Es	Hate		WE	LL CONDITION	covered	in sa		NOMINAL DIAMETER	O.D.	I.D.	VOLUME (GAL/LIN FT)
CLIENT	ADEC	KH Z	13/11		DAI	MAGE PRESENT	469			(2")	2.375	2.067"	0.17
DATE	5/14/	14				PTH TO WATER (FROM TOC)	84-1-1	43,57	-11.	3"	3.5"	3.068"	0.38
SITE	MN	1-8	1			EPTH TO BASE (FROM TOC)	2446	92	H.	4"	4.5"	4.026"	0.66
GEOLOGIST	Em	114 F	veitus)	HEI	GHT OF WATER COLUMN	3.35	A.		6"	6.625"	6.065°	1.50
WEATHER/ TEMPERATURE	55°	2 WIN	dy		v	VELL VOLUME	1560	35 god	lens	8 ^N	8.625"	7.981*	2.60
WIND	NOWIN.	indy							-				
SAMPLE TYPE	(GW,	2141111	ducala	W.	S	AMPLING DA	ATA						
PRODUCT, O		army	MM MA	N	1		110/					-	
SAMPLE COLL WITH:		Bailer			Pum	p, Type:\(ladder		Other, Sp	ecify:			
MADE O	F:]	Stainless	Steel		PVC								
	3	_ Teflon			Dispo	osable LDPE			Other, Sp	ecify:			
SAMPLING D PROCEDU		Alco	MOX 3	+ water	Y								
SAMPLE DESCR	IPTION:	brun		no	oder	e ¹							
(color, free pi	roduct	D . Mari			00001								
turbidity													
, and an					FIELD WAT	ER QUALITY	PARAMETERS					=	
Time	Flow Rate (mt/min)	Water Level	Draw Down	Temperature (°C)	Spec. Cond.	D.O.	0.0.	рН	ORP (mV)	Turbidity (NTU)	Co	olor	Odor
Time 121 0	Flow Rate (mt/min)	44.12	Draw Down	3.194	Spec. Cond. (µS/cm) ^c			рН 16 36	(mV) 15,2 ,4		bio	wn	Odor 1/0
Time 121 6	Flow Rate (mt/min)	44.0	0.55	7.64	Spec. Cond. (μS/cm) ^c (β)-(1)	D.O. (%)	0.0. (mg/L) 2.0)	pH (36)	(mV)	(NTU) 227 105	 	wn	
Time 121 0	Flow Rate (mt/min)	44.12 44.0 43.90 44.0		3.194	5pec. Cond. (μ5/cm) ^c - 2)-\\()	17.4 17.4 11.0 9,1	D.O. (mg/L)	рН 16 36	(mV) 152,4 150,4 148,7	(NTU)	bio	wn	
Time 12\\(\phi\) \\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\	Flow Rate (ml/min) 3.15 3.50 3.50 3.50 3.70	44.0 43.90 44.0 44.0 45.76	0.55 0.43 0.33 0.43 0.43	7.64 7.64 7.57 7.63 7.66	5pec. Cond. (μ\$/cm) ⁶ (β-/cm) ⁶	8.0. (%) 17.4 11.2 11.0 9,1	0.0. (mg/L) 2.0\ 1.33 \1.09 1.09	pH 6.36 6.28 6.25 6.25 6.31	(mV) 152,4 150,4 148,7 146,7 138,2	(NTU) 227 105 105 536 462	bio	wn	
Time (2\ \0\ \22\\) \22\\\\ \22\\\\\\\\\\\\\\\\\\\\	Flow Rate (ml/min) 3.15 3.50 3.50 3.70 3.70	44.0 43.90 43.76 43.65	0,55 0,43 0,43 0,43 0,14 0,08	7.64 1.54 1.54 1.63 7.66 7.71	Spec. Cond. (μS/cm) ^c (β-10)	8.0. (%) 17.4 11.2 11.0 9.1 8.7	0.0. (mg/L) 2.01 1.33 1.20 1.04 1.04	pH 6.36 6.25 6.31 6.54	(mv) 152 14 150 14 146, 7 138 2 133 7	(NTU) 227 105 81,15 536 462 31.5	bio	un	
Time 12\\(\phi\) \\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\	Flow Rate (ml/min) 3.15 3.50 3.50 3.50 3.70	44.0 43.90 44.0 44.0 45.76	0.55 0.43 0.33 0.43 0.43	7.64 7.64 7.57 7.63 7.66	5pec. Cond. (μ\$/cm) ⁶ (β-/cm) ⁶	8.0. (%) 17.4 11.2 11.0 9,1	0.0. (mg/L) 2.0\ 1.33 \1.09 1.09	pH 6.36 6.28 6.25 6.25 6.31	(mV) 152,4 150,4 148,7 146,7 138,2	(NTU) 227 105 105 536 462	bw Claa	un	
Time (2\ \0\ \22\\) \22\\\\ \22\\\\\\\\\\\\\\\\\\\\	Flow Rate (ml/min) 3.15 3.50 3.50 3.70 3.70	44.0 43.90 43.76 43.65	0,55 0,43 0,43 0,43 0,14 0,08	7.64 1.54 1.54 1.63 7.66 7.71	Spec. Cond. (μS/cm) ^c (β-10)	8.0. (%) 17.4 11.2 11.0 9.1 8.7	0.0. (mg/L) 2.01 1.33 1.20 1.04 1.04	pH 6.36 6.25 6.31 6.54	(mv) 152 14 150 14 146, 7 138 2 133 7	(NTU) 227 105 81,15 536 462 31.5	bw Claa	un	
Time (2\ \0\ \22\\) \22\\\\ \22\\\\\\\\\\\\\\\\\\\\	Flow Rate (ml/min) 3.15 3.50 3.50 3.70 3.70	44.0 43.90 43.76 43.65	0,55 0,43 0,43 0,43 0,14 0,08	7.64 1.54 1.54 1.63 7.66 7.71	Spec. Cond. (μS/cm) ^c (β-10)	8.0. (%) 17.4 11.2 11.0 9.1 8.7	0.0. (mg/L) 2.01 1.33 1.20 1.04 1.04	pH 6.36 6.25 6.31 6.54	(mv) 152 14 150 14 146, 7 138 2 133 7	(NTU) 227 105 81,15 536 462 31.5	bw Claa	un	
Time (2\ \0\ \22\\) \22\\\\ \22\\\\\\\\\\\\\\\\\\\\	Flow Rate (ml/min) 3.15 3.50 3.50 3.70 3.70	44.0 43.90 43.76 43.65	0,55 0,43 0,43 0,43 0,14 0,08	7.64 1.54 1.54 1.63 7.66 7.71	Sper. Cond. (µS/cm) ^c 17)-10 13-11 13-10 13-39 13-39 13-39 13-39	8.4	0.0. (mg/L) 2.01 1.33 1.20 1.04 1.04	pH (4.36) (4.28) (4.25) (6.31) (6.32)	(mv) 152 14 150 14 146, 7 138 2 133 7	(NTU) 227 105 81,15 536 462 31.5	bw Claa	un	
Time (2\ \0\ \22\\) \22\\\\ \22\\\\\\\\\\\\\\\\\\\\	Flow Rate (ml/min) 3.15 3.50 3.50 3.70 3.70	44.0 43.90 43.76 43.65	0,55 0,43 0,43 0,43 0,14 0,08	7.64 1.163 7.66 7.71 7.61	Sper. Cond. (µS/cm) ^c 17)-10 13-11 13-10 13-39 13-39 13-39 13-39	8.4	D.D. (mg/L) 2.0\ 3.33 1.20 1.09 1.04 1.00 1.00	pH (4.36) (4.28) (6.25) (6.31) (6.32)	(mv) 152 14 150 14 146, 7 138 2 133 7	(NTU) 227 105 81,15 536 462 31.5	bw Claa	un	
Time (2\0) \22\0 \22\0 \230 \235 \240 (245	Flow Rate (mt/min) 315 350 350 350 370 370 770 770 770 770 770 770 770 77	44.12 44.0 43.90 44.0 43.76 43.65 43.65	0.55 0.43 0.43 0.43 0.08 0.08	7.64 1.163 7.66 7.71 7.61	Sper. Cond. (μS/cm) ^c (γ)-\() (β-1) (β-1	8.4 8.4 8.4	D.D. (mg/L) 2.0\ 1.33 1.20 1.09 1.09 1.004 1.006	pH 10.310 10.31 10.28 10.25 10.31 10.32	(mV) 152 14 150 14 146, 7 138 Z 131.6	(NTU) 221 105 841 536 462 31.5 22.0	hw Clan	wn I	10
Time (2\0) \22\1230 \230 \235 \240 \245 Analyte VOC Dhc	Flow Rate (mt/min) 315 350 350 350 370 370 770 770 770 770 770 770 770 77	44.12 44.0 43.90 44.0 43.76 43.65 43.65	0.55 0.43 0.43 0.43 0.08 0.08	7.64 1.163 7.66 7.71 7.61	Sper. Cond. (μS/cm) ^c (γ)-\() (β-1) (β-1	0.0. (%) 17.4 11.7 11.0 9.1 8.7 8.4 8.4 Additional Sa	0.0. (mg/L) 2.0\ 1.33 1.20 1.09 1.04 1.00 1.00	pH 10.310 10.31 10.28 10.25 10.31 10.32	(mV) 152 4 150 4 190 4 146, 7 138 2 133. 7	(NTU) 221 105 841 536 462 31.5 22.0	hw Clan	wn I	10
Time (2\0) \22\\ \22\6\\230 \235 \240 \245 Analyte VOC Dhc MNA	Flow Rate (mt/min) 315 350 350 350 370 370 770 770 770 770 770 770 770 77	44.12 44.0 43.90 44.0 43.76 43.65 43.65	0.55 0.43 0.43 0.43 0.08 0.08	7.64 1.163 7.66 7.71 7.61	Sper. Cond. (μS/cm) ^c (γ)-\() (β-1) (β-1	0.0. (%) 17.4 11.7 11.0 9.1 8.7 8.4 8.4 Additional Sa	D.D. (mg/L) 2.0\ 1.33 1.20 1.09 1.09 1.004 1.006	pH 10.310 10.31 10.28 10.25 10.31 10.32	(mV) 152 14 150 14 146, 7 138 Z 131.6	(NTU) 221 105 841 536 462 31.5 22.0	hw Clan	wn I	10
Time 12\0 \22\0 \22\0 \230 \235 \240 \245 Analyte VOC Dhc	Flow Rate (mt/min) 315 350 350 350 370 370 770 770 770 770 770 770 770 77	44.12 44.0 43.90 44.0 43.76 43.65 43.65	0.55 0.43 0.43 0.43 0.08 0.08	7.64 1.163 7.66 7.71 7.61	Sper. Cond. (μS/cm) ^c (γ)-\() (β-1) (β-1	0.0. (%) 17.4 11.7 11.0 9.1 8.7 8.4 8.4 Additional Sa	D.D. (mg/L) 2.0\ 1.33 1.20 1.09 1.09 1.004 1.006	pH 10.310 10.31 10.28 10.25 10.31 10.32	(mV) 152 14 150 14 146, 7 138 Z 131.6	(NTU) 221 105 841 536 462 31.5 22.0	hw Clan	wn I	

Eng	ntna			GROU		TER SAM		PROJECT NUMBER: 20266.008.01	MW-10			SHEET:
PROJECT NAME	AK Ra	1 Este	fe		w	ELL CONDITION	600	A	NOMINAL DIAMETER	O.D.	I.D.	VOLUME (GAL/LIN FT)
CLIENT	AES				DA	MAGE PRESENT		NO		2.375"	2.067*	0.17
DATE	5/1.	5/14			DE	PTH TO WATER (FROM TOC)	43.6	42.88	3"	3.5"	3.068"	0.38
SITE	414/	ban be	1/			EPTH TO BASE (FROM TOC)	49.85	# 48.50	4"	4.5"	4.026	0.66
GEOLOGIST	A Geilie		For		НЕ	GHT OF WATER	5	.62 Ft	6"	6.625*	6.065"	1.50
WEATHER/ TEMPERATURE	1	Sun				WELL VOLUME	0.90	6 cal	8"	8.625"	7.981°	2.60
WIND		sht					1					
						SAMPLING DA	TA					
PRODUCT, OT		-32	3W									
SAMPLE COLL WITH:		Bailer	1		J Pum	p, Type:	ledder	Other	, Specify:			
MADEO	_	-	o 1		•	p, . , p =		_	, -,,-			
MADEO	_	Stainless	Steel		PVC	-11.1005		0.1				
SAMPLING D	7	Teflon			· ·	osable LDPE		Other	, Specify:			
PROCEDU		4	(09 DX	+ wat	er rin	se						
SAMPLE DESCR	RIPTION:								2.2			
(color, free protection thickness, o												
turbidity	y)											
					FIELD WAT	ER QUALITY P	ARAMETERS				-	
Time	Flow Rate	Water Level	Draw Down	Temperature	Spec. Cond.	D.O.	D.O.	pH ORI		Co	lor	Odor
1550	(mL/min) 340	41.00	0.12	9.49	(μS/cm) ^c	105.4	(mg/L) 12, 20	6.05 89.3		Cla		none
1555	340	43.00	0.12	8.78	0.917	102.7	11.98	6.22 93		_		1
1604	340	43.00	0.12	8.53	0.980	98.9	28.97	6.27 95.0				
1608	340	43.00	0.12	8.50	9985	97.6	11.37	6.28 96.				
1612	340	43.00	0.12	8.53	0,995	95.4	11.15	6.28 97.	5 3/9	U		
									100			
	 											
					ANALYTIC	AL SAMPLE IN	FORMATION					
Analyte	Time		Identific	ation		Additional San	nple Time	Identificat	ion Sampling I	Notes:		
voc	1612	14-A	REPL	- Mu-10 -	GW	Duplicate						
Dhc												
MNA	1612	900	10 09	above				-	_			
CSIA Other								. ,				
5									-			

1

1 .

Ahtn	a	GROU		TER SAM	IPLING	PROJECT NUMBE 20200.	R:	WELL NUM		1	SHEET:
PROJECT NAME A	K Real Es	teete	w	ELL CONDITION	9009	T. Ver		NOMINAL DIAMETER	G.D.	I.D.	VOLUME (GAL/LIN FT)
CLIENT AD	FC.		DA	MAGE PRESENT	non-	е		2"	2.375"	2.067"	0.17
DATE 5	114/14		Di	PTH TO WATER (FROM TOC)	18,00	8 ft.		3"	3.5°	3.068*	0.38
SITE 4G	mW-12			(FROM TOC)	28.5	一千杯。		4"	4.5"	4.026"	0.66
	mily Freitas)	HE	IGHT OF WATER	9.89	ff		6"	6.625"	6.065"	1.50
WEATHER/ TEMPERATURE 64	Sunna	4-1	lane i	WELL VOLUME	1,69	13 00	Mons	8"	8.625"	7.981"	2.60
WIND ST	ight bree	20				13 10					
				SAMPLING DA	TA						
SAMPLE TYPE (GW, PRODUCT, OTHER):	611										
SAMPLE COLLECTED WITH:	Bailer		X	Pump blad	der	Othe	er, Speci	fy:			
MADE OF:	→ Stainless	Stool	/>	PVC							
	X Teflon	Steel		_FVC Disposable LC	NDE	Oth	er, Speci	f.e.			
SAMPLING DECON		wala.		_ Disposable cu	,,,,		er, speci	ıy.			
PROCEDURE:	Alconox+	water			0.000						
SAMPLE DESCRIPTION:	Clear 1	ulth	NO	oder	Weser	1					
thickness, odor, turbidity)											
A Commence of											
	Late (Min)		FIELD WAT	TER QUALITY P	ARAMETERS		01.3				
Time Purged V		Temperature (°C)	рН	Conductivity (µS/cm) ^c	ORP (mV)	D.O. (%)	D.O. (mg/L)	Turbidity (NTU)	Co	olor	Odor
271316 450	18.80 0.12	7.94	6.40	0.585	127.2		0-56	159	50	_	No
32 32 450		7.45	6.84	0.613	85.5 48 0	2.6	0.32	57.5	cle	UY	
1442 450		719	715	0.620	29.3	1.6	0.20	12.8	1		
148 45	0 18.80	1.17	7.18	0.613	21,2	1.6	0119	8.37			
1451 45	0 18.80	7.15	7.18	0.611	18.4	115	0.17	6.32		<u>r</u>	. V
14		Mary and a series of			and the fire stage of the control of the control	1		+	-		
1						5		138			
			The French					7	3.6		
				L						\leq	
			ANALYTIC	AL SAMPLE IN	FORMATION					1	70
Analyte Time	identific	ation		Additional Sar	nple Time	Ide	ntification	Sampling	Notes:		
DRO/RED (45)	14- AREP	L-46m	W12 - L	Duplicate				Du	rae	d	
GRO/BIEX				100				7 7	1	-1	
PAH						7		N	irge 3g	9110	m
Other Other		>	-C2			_	CM	-	- 3		
- Culei			79				70-				

re

al	atno			GROU	JNDWA	TER SAM	IPLING	PROJ		WELL NUN	ABER:		SHEET:
Eng	ineering				F	ORM		20266.		IGMW	13	1	of \
ROJECT NAME	AKR	los	estat	ف	V	VELL CONDITION	Good			NOMINAL DIAMETER	O.D.	1.D.	OLUME (GAL/LIN FT
CLIENT	DE				Di	AMAGE PRESENT	No			2	2.375"	2.067"	0.17
DATE	5/19/15	1	Mary .		D	EPTH TO WATER (FROM TOC)	8.45			3"	3.5"	3.068"	0.38
SITE	Fourt	1	Gam	sell		DEPTH TO BASE (FROM TOC)	12.60			4"	4.5"	4.026"	0.66
GEOLOGIST	SFOX /		eitich	Colorado Madrida Calvadado	н	EIGHT OF WATER COLUMN	4.15			6"	6.625*	6.065*	1.50
WEATHER/	· /		enior			WELL VOLUME		c = 1		27		7.004	2.60
MPERATURE WIND	Paht	9					0.70	6 90	CONT	8*	8 625"	7.981"	
	Tarre					SAMPLING DA	TA	PO DITE SO			177		
SAMPLE TYPE	1	N									11		
AMPLE COLL	ECTED		0-11										
WITH:			_Bailer		- X -	Pump		—— ^{Ot}	her, Specif	y:			
MADE O	F:		Stainless	Steel		PVC							
	_		Teflon		X	_Disposable LC	PE	Ot	her, Specif	y:			
SAMPLING D	ECON Mcm	lox r	ing s	DI,	Honse								
	Flow Rate	(m4n	nin)		FIELD WAT	TER QUALITY P	ARAMETERS			LE,			
Time	Purged Volume (Gal)	Water Leve	d Draw Down	Temperature	рН	Conductivity	ORP	D.O.	D.O.	Turbidity	Co	lor	Odor
243	350325	8.51	0.06	8.53	647	(µS/cm) ^c	(mV) -4,9	14.8	(mg/L)	(NTU)	durk		405
248	325	8,51	0.06	5.53	6,42	00777	-13,4	13.4	1.70	208	0.0.		1
1253				4.67	6.00	6.804	4.0	3,5	0.45	100			
258	1	1	1	4.63	10.21	6.808	-12.3	2.3	0.29				1
303	*		-	4.59	6.260	0.810	-17-7	2.2	0.28	1369		-	•
	- pergrad		Tel I	PAN PAR PAR		14.7		72			4 -	211	= -
								0.004		115		1	
							ALTER SE						
			-										
					ANALYTIC	AL CANADI E INI	CODAGATION		- Mr		-	1000	
		-			ANALYTIC	AL SAMPLE IN				Sampling I	Notes:		
Analyte	Time		identific			Additional Sar	nple Time	ld	lentification	Jamping .	totes.		
DRO/ARO	310	4-AR	CEPL-	HGMW-	-13-GW	Duplicate		<u> </u>					
GRO/BTEX										-			
										1			
PAH		BE					7						
Other Other							,						

al	atna			GROU	INDWA	TER SAM	IPLING	PROJE		WELL NUM	BER:		SHEET:
Eng	ineering				FC	DRM		20266.	1	1GMV	V-14	1	of \
PROJECT NAME	AK R	EALE	ESTAT	(F	w	ELL CONDITION	Goos			NOMINAL DIAMETER	O.D.	I.D.	VOLUME (GAL/LIN FT)
CLIENT	DEC				DA	MAGE PRESENT	No		-49	(2")	2.375"	2.067"	0.17
DATE	5/15	114				PTH TO WATER (FROM TOC)	5.84			3"	3.5"	3.068"	0.38
SITE	4TH.	GA	MBLE		_	(FROM TOC)	13.22			4"	4.5"	4.026"	0.66
GEOLOGIST	A GE	-, ,	1	FOX	HE	IGHT OF WATER	7.38)		6"	6.625"	6.065"	1.50
WEATHER/ TEMPERATURE	MOST	LY S	MNIN	60°F	· v	WELL VOLUME	1.25	gallons	241	8"	8.625"	7.981"	2.60
WIND	ligh	X)					
SAMPLE TYPE	(ew				S	SAMPLING DA	TA						
PRODUCT, OT	THER):												
SAMPLE COLL WITH:			Bailer		X	Pump		Oti	her, Specif	y:			
MADE O	F:		Stainless	Steel		PVC							
			Teflon		×	Disposable LD	PE	Ot	her, Specif	y:			
SAMPLING DI	ECON ALC	'y gavo'	inse i	Il ring	CP								
						2 a la uso	0.001.0-	I G		less 1	fiel	1	Art
SAMPLE DESCR (color, free pr	roduct	10	Mouter 1	reryd		land as	pupupod	d	me C	dor	11.61	1	1701
thickness, o turbidity	The second of the second	110	5 buch	OCT N	ofed	-							
turbialty													
	Flowrat	e (mymi	n)		FIELD WAT	ER QUALITY P	ARAMETERS					=	
	Flow rate		Draw Down	Temperature	FIELD WAT	Conductivity	ORP	D.O.	D.O.	Turbidity (NTU)	Co	lor	Odor
	Flowrat		Draw Down	(°C)			ORP (mV) -식나 ,	0.0. (%) 2@9	(mg/L)	Turbidity (NTU)	blad	-	Odor Yes
Time 1423 1432	Flow rad- -Parged Volume (Gal)	Water Level	Draw Down	6.32 5.89	pH 6.57	Conductivity (µ5/cm) ^c 0,743 0,786	ORP (mV) -44.1	2609 3.20	(mg/L)	(NTU) 714 253		-	Yes
Time 1423 1432 1438	Flow route Parsed Volume (Gal)	Water Level	Draw Down	6.32 5.89	6.40 6.40	Conductivity (µS/cm) ^c 0,743 0,786 0,733	ORP (mV) -44.1 -35.9 _35.7	2609	(mg/L) 10.51 0.29	(NTU) 714		-	
Time 1423 1432	Flow route Parsed Volume (Gal)	Water Level	Draw Down	6.32 5.89	pH 6.57	Conductivity (µ5/cm) ^c 0,743 0,786	ORP (mV) -44.1	2009 3.20 2.3	(mg/L)	(NTU) 714 253		-	Yes
Time 1423 1432 1438 1443	Flow rad- Parged V-burne (Gall) 350	Water Level 5 86 5 86	Draw Down 0.02 0.02	6.32 5.89 6.05 6.40	pH 6.57 6.40 6.40 6.56	Conductivity (µ\$/cm) ^c 0,743 0,786 0,733	ORP (mV) -44.1 -35.9 _35.7 -43.3	2009 3.20 2.3 1.9	(mg/L) 16.9 0.1 0.29 0.29	(NTU) 714 253		-	Yes
Time 1423 1432 1438 1443	Flow rad- Parged V-burne (Gall) 350	Water Level 5 86 5 86	Draw Down 0.02 0.02	6.32 5.89 6.05 6.40	pH 6.57 6.40 6.40 6.56	Conductivity (µ\$/cm) ^c 0,743 0,786 0,733	ORP (mV) -44.1 -35.9 _35.7 -43.3	2009 3.20 2.3 1.9	(mg/L) 16.9 0.1 0.29 0.29	(NTU) 714 253		-	Yes
Time 1423 1432 1438 1443	Flow rad- Parged V-burne (Gall) 350	Water Level 5 86 5 86	Draw Down 0.02 0.02	6.32 5.89 6.05 6.40	pH 6.57 6.40 6.40 6.56	Conductivity (µ\$/cm) ^c 0,743 0,786 0,733	ORP (mV) -44.1 -35.9 _35.7 -43.3	2009 3.20 2.3 1.9	(mg/L) 16.9 0.1 0.29 0.29	(NTU) 714 253		-	Yes
Time 1423 1432 1438 1443	Flow rad- Parged V-burne (Gall) 350	Water Level 5 86 5 86	Draw Down 0.02 0.02	6.32 5.89 6.05 6.40	pH 6.57 6.40 6.40 6.56	Conductivity (µ\$/cm) ^c 0,743 0,786 0,733	ORP (mV) -44.1 -35.9 _35.7 -43.3	2009 3.20 2.3 1.9	(mg/L) 16.9 0.1 0.29 0.29	(NTU) 714 253		-	Yes
Time 1423 1432 1438 1443	Flow rad- Parged V-burne (Gall) 350	Water Level 5 86 5 86	Draw Down 0.02 0.02	6.32 5.89 6.05 6.40	pH 6.40 6.40 6.40 6.56 6.60	Conductivity (µ\$/cm)\$ 0,743 0,786 0,733 6,732 0,733	ORP (mV) -44.1 -35.9 -35.7 -43.3 -44.7	2009 3.20 2.3 1.9	(mg/L) 16.9 0.1 0.29 0.29	(NTU) 714 253		-	Yes
Time 1423 1432 1438 1443 1443	From rad- Parged Volume (Gall) 350	Water Level 5 86 5 86	Draw Down 0.02 0.02	(c) (c) 32 53.89 (c) 05 (c) 40 (c) 32	pH 6.40 6.40 6.40 6.56 6.60	Conductivity (µ\$/cm) ^c 0,743 0,786 0,733	ORP (mV) -44.1 -35.9 -35.7 -43.3 -44.7	(%) 2.009 3.20 2.3 1.9 1.9	(mg/L) 16.9 0.1 0.29 0.29	(NTU) 714 253	blad	-	Yes
Time 1423 1432 1438 1443 1443 1443 Analyte	From rad- Parged V-hame (Gal) 350 350	Water Level 5.86 5.86	Draw Down O.OZ O.OZ	(rc) (0.32 55.89 (0.05 (0.40 (0.32	pH 6.57 6.40 6.40 6.56 6.60	Conductivity (µ\$/cm) ^c 0,743 0,786 0,733 6,732 0,733	ORP (mV) -44.1 -35.9 -35.7 -43.3 -44.7	(%) 2.009 3.20 2.3 1.9 1.9	(mg/L) (w.9/C)	(NTU) 714 253 107	blad	ck/greg	Yes
Time 1423 1432 1438 1443 1440 Analyte VOC DRO/RRO GRO/BTEX	From rad- Parged V-hame (Gal) 350 350	Water Level 5.86 5.86	Draw Down O.OZ O.OZ	(c) (c) 32 53.89 (c) 05 (c) 40 (c) 32	pH 6.57 6.40 6.40 6.56 6.60	Conductivity (µS/cm) ^c 0,743 0,726 0,733 6,732 0,733 AL SAMPLE INI Additional Sar	ORP (mV) -44.1 -35.9 -35.7 -43.3 -44.7	(%) 2.009 3.20 2.3 1.9 1.9	(mg/L) (w.9/C)	(NTU) 714 253 107	blad	ck/greg	Yes
Time 1423 1432 1438 1443 1440 Analyte VOC DRO/ARTO GRO/BTEX PAH	From rad- Parged V-hame (Gal) 350 350	Water Level 5.86 5.86	Draw Down O.OZ O.OZ	(rc) (0.32 55.89 (0.05 (0.40 (0.32	pH 6.57 6.40 6.40 6.56 6.60	Conductivity (µS/cm) ^c 0,743 0,726 0,733 6,732 0,733 AL SAMPLE INI Additional Sar	ORP (mV) -44.1 -35.9 -35.7 -43.3 -44.7	(%) 2.009 3.20 2.3 1.9 1.9	(mg/L) (w.9/C)	(NTU) 714 253 107	blad	ck/greg	Yes
Time 1423 1432 1438 1443 1440 Analyte VOC DRO/RRO GRO/BTEX	From rad- Parged V-hame (Gal) 350 350	Water Level 5.86 5.86	Draw Down O.OZ O.OZ	(rc) (0.32 55.89 (0.05 (0.40 (0.32	pH 6.57 6.40 6.40 6.56 6.60	Conductivity (µS/cm) ^c 0,743 0,726 0,733 6,732 0,733 AL SAMPLE INI Additional Sar	ORP (mV) -44.1 -35.9 -35.7 -43.3 -44.7	(%) 2.009 3.20 2.3 1.9 1.9	(mg/L) (w.9/C)	(NTU) 714 253 107	blad	ck/greg	Yes
Time 1423 1432 1438 1443 1443 1440 Analyte	From rad- Parged V-hame (Gal) 350 350	Water Level 5.86 5.86	Draw Down O.OZ O.OZ	(rc) (0.32 55.89 (0.05 (0.40 (0.32	pH 6.57 6.40 6.40 6.56 6.60	Conductivity (µS/cm) ^c 0,743 0,726 0,733 6,732 0,733 AL SAMPLE INI Additional Sar	ORP (mV) -44.1 -35.9 -35.7 -43.3 -44.7	(%) 2.009 3.20 2.3 1.9 1.9	(mg/L) (w.9/C)	(NTU) 714 253 107	blad	ck/greg	Yes

A	ntna			GROU		TER SAM	1PLING	PROJEC NUMBE 20266. OC	R:	WELL NUM 46 MW-		<i>!</i>	SHEET:
OJECT NAM	E AK I	Real E	state		w	ELL CONDITION	9008			NOMINAL DIAMETER	O.D.	I,D.	VOLUME (GAL/LIN FT
CLIENT	ARS		HALL.		DA	MAGE PRESENT	no			2"	2.375"	2.067*	0.17
DATE	5	151	14			PTH TO WATER (FROM TOC)	5.20	Ft	1	3"	3.5*	3.068 ^u	0.38
SITE	414	//000	6011			EPTH TO BASE (FROM TOC)	9.10	Ft		4"	4.5"	4.026"	0.66
EOLOGIST	A Gelic 4					IGHT OF WATER		10 Ft		6"	6.625	6.065*	1.50
VEATHER/ MPERATURE			F			WELL VOLUME	00	6 591		8**	8.625*	7.981"	2.60
WIND	10						0.0)41			10025	7.00	
	110	-				AMPLING DA	TA			-			
AMPLE TYP		(Sh										
MPLE COL					14.0	р, Туре:	Ade-		O41 C		-		
WITH:	* 4	_ Bailer			Yı Pum	p, Type: <i></i>	a v v e r		Other, S _l	ресту:	3-		
MADE O	OF:	Stainless	Steel		PVC								
	2	Teflon			Disp	osable LDPE			Other, S _l	pecify:			
AMPLING D PROCEDU		ala		-									
MPLE DESCF	RIPTION:	uiono	X +	DI wat	be Cin	<u>ee</u>						ž	
MPLE DESCR	RIPTION:	ulono	* *	DI was								<i>y</i>	
MPLE DESCR color, free p thickness, c	RIPTION: product odor, y)	ulland	<i>x</i> +	1	FIELD WAT	ER QUALITY I							
MPLE DESCF olor, free p thickness, c	RIPTION: product odor, y) Flow Rate (mL/min)	Water Leve	Draw Down	Temperature (*C)	FIELD WAT	ER QUALITY I	D.O. (mg/L)	рН	ORP (mV)	Turbidity (NTU)	CC	olor	Odor
MPLE DESCR olor, free p thickness, c turbidity	RIPTION: product odor, y) Flow Rate (mL/min)	Water Level	Draw Down	Temperature (*C)	FIELD WAT Spec. Cond. (µ5/cm) ^c 0.80 Z	ER QUALITY I	D.O. (mg/L)	рн 6.40		(NTU)	-	olor Cy	Odor Re/
APLE DESCRIPTION OF THE PROPERTY OF THE PROPER	Flow Rate (mL/min)	Water Level 5, 25 5, 25	Draw Down 0.50,65 0.05	Temperature (°C)	FIELD WAT Spec. Cond. (µ5/cm) ^c 0.80 Z. Q.799	ER QUALITY I	D.O. (mg/L) 0.97	рн 6.40 5.96	(mV) -31.4 -7.2	617 91.0	-		
APLE DESCRIPTION OF THE PROPERTY OF THE PROPER	Flow Rate (mL/min)	Water Level 5, 25 5, 25 5, 25	Draw Down 0.50,6 0.05	Temperature (°C) 6.61 6.74 6.09	FIELD WAT Spec. Cond. (µ5/cm) ^c 0.80 Z 0.799 0.799	ER QUALITY I D.O. (%) 7.5 9.6 8.9	D.O. (mg/t) D. 97 1.16	рн 6.40 5.96 6.13	(mV) -31.4 -7.2 -6.1	(NTU) 617 91.0	-		
APLE DESCRIPTION OF THE PROPERTY OF THE PROPER	Flow Rate (mL/min)	Water Level 5, 25 5, 25 5, 25 5, 25 5, 25	Draw Down D. 50.65 D. 95 D. 95 D. 95 D. 95	Temperature (°C) 6.61 6.84 6.09 6.05 6.09	FIELD WAT Spec. Cond. (µ5/cm) ^c 0.80 Z. Q.799	D.O. (%) 7.5 9.6 8.9 7.5 8.3	D.O. (mg/L) D. 97 1.16 L. 17 D. 92 1.02	pH 6.40 5.96 6.13 6.28 6.35	(mV) -31.4 -7.2 -6.1 -23.2 -21.5	(NTU) 617 91.0 31.0 18.1	-		Re/
Time	Flow Rate (mL/min) 460 460 460	Water Level 5, 25 5, 25 5, 25 5, 25 5, 25	Draw Down 0.50,6 0.05	Temperature (°C) 6.61 6.74 6.09	FIELD WAT Spec. Cond. (µS/cm) ^c 0.80 Z 0.799 0.799 0.799	ER QUALITY I D.O. (%) 7.5 9.6 8.9 7.5	D.O. (mg/L) 0.92 1.16 L.12 0.92	pH 6.40 5.96 6.13 6.28	(mV) -31.4 -7.2 -6.1 -23.2	(NTU) 617 91.0 31.0 18.1	-		
APLE DESCRIPTION OF THE PROPERTY OF THE PROPER	Flow Rate (mL/min) 460 460 460 460	Water Level 5, 25 5, 25 5, 25 5, 25 5, 25	Draw Down D. 50.65 D. 95 D. 95 D. 95 D. 95	Temperature (°C) 6.61 6.84 6.09 6.05 6.09	FIELD WAT Spec. Cond. (µS/cm) ^c 0.80 Z 0.799 0.799 0.799 0.798 0.796	D.O. (%) 7.5 9.6 8.9 7.5 8.3	D.O. (mg/L) D. 97 1.16 L. 17 D. 92 1.02	pH 6.40 5.96 6.13 6.28 6.35	(mV) -31.4 -7.2 -6.1 -23.2 -21.5	(NTU) 617 91.0 31.0 18.1	-		Re/
APLE DESCRIPTION OF THE PROPERTY OF THE PROPER	Flow Rate (mL/min) 460 460 460 460	Water Level 5, 25 5, 25 5, 25 5, 25 5, 25	Draw Down D. 50.65 D. 95 D. 95 D. 95 D. 95	Temperature (°C) 6.61 6.84 6.09 6.05 6.09	FIELD WAT Spec. Cond. (µS/cm) ^c 0.80 Z 0.799 0.799 0.799 0.798 0.796	D.O. (%) 7.5 9.6 8.9 7.5 8.3	D.O. (mg/L) D. 97 1.16 L. 17 D. 92 1.02	pH 6.40 5.96 6.13 6.28 6.35	(mV) -31.4 -7.2 -6.1 -23.2 -21.5	(NTU) 617 91.0 31.0 18.1	-		Re/
APLE DESCRIPTION OF THE PROPERTY OF THE PROPER	Flow Rate (mL/min) 460 460 460 460	Water Level 5, 25 5, 25 5, 25 5, 25 5, 25	Draw Down D. 50.65 D. 95 D. 95 D. 95 D. 95	Temperature (°C) 6.61 6.84 6.09 6.05 6.09	FIELD WAT Spec. Cond. (µS/cm) ^c 0.80 Z 0.799 0.799 0.799 0.798 0.796	D.O. (%) 7.5 9.6 8.9 7.5 8.3	D.O. (mg/L) D. 97 1.16 L. 17 D. 92 1.02	pH 6.40 5.96 6.13 6.28 6.35	(mV) -31.4 -7.2 -6.1 -23.2 -21.5	(NTU) 617 91.0 31.0 18.1	-		Re/
APLE DESCRIPTION OF THE PROPERTY OF THE PROPER	Flow Rate (mL/min) 460 460 460 460	Water Level 5, 25 5, 25 5, 25 5, 25 5, 25	Draw Down D. 50.65 D. 95 D. 95 D. 95 D. 95	Temperature (°C) 6.61 6.84 6.09 6.05 6.09	FIELD WAT Spec. Cond. (µS/cm) ^c 0.80 Z 0.799 0.799 0.799 0.798 0.796	D.O. (%) 7.5 9.6 8.9 7.5 8.3	D.O. (mg/L) D. 97 1.16 L. 17 D. 92 1.02	pH 6.40 5.96 6.13 6.28 6.35	(mV) -31.4 -7.2 -6.1 -23.2 -21.5	(NTU) 617 91.0 31.0 18.1	-		Re/
APLE DESCRIPTION OF THE PROPERTY OF THE PROPER	Flow Rate (mL/min) 460 460 460 460	Water Level 5, 25 5, 25 5, 25 5, 25 5, 25	Draw Down D. 50.65 D. 95 D. 95 D. 95 D. 95	Temperature (°C) 6.61 6.84 6.09 6.05 6.09	FIELD WAT Spec. Cond. (µ5/cm) ^c 0.80 Z 0.799 0.799 0.798 0.796 0.796	D.O. (%) 7.5 9.6 8.9 7.5 8.3	0.0 (mg/L) 0.92 1.16 L.12 0.92 1.02	6.40 5.96 6.13 6.28 6.35 6.36	(mV) -31.4 -7.2 -6.1 -23.2 -21.5	(NTU) 617 91.0 31.0 18.1	-		Re/
WPLE DESCRIPTION OF THE PROPERTY OF THE PROPER	Flow Rate (mL/min) 460 460 460 460	Water Level 5, 25 5, 25 5, 25 5, 25 5, 25	Draw Down D. 50.65 D. 95 D. 95 D. 95 D. 95	Temperature (°C) 6.61 6.84 6.09 6.05 6.09 6.10	FIELD WAT Spec. Cond. (µ5/cm) ^c 0.80 Z 0.799 0.799 0.798 0.796 0.796	ER QUALITY I D.O. (%) 7.5 9.6 8.9 7.5 8.3 7.4	D.O. (mg/L) 0.92 1./6 L.12 0.92 1.02 0.86	6.40 5.96 6.13 6.28 6.35 6.35	(mV) -31.4 -7.2 -6.1 -23.2 -21.5	(NTU) 6/7 9/1,0 3/1.0 /8./ 16.7 17.2	3		Re/
MPLE DESCRETORY Trime D 2 9 0 3 4 0 3 4 0 5 4 Analyte	Flow Rate (mt/min) 460 460 460 460 460	Water Level 5, 25 5, 25 5, 25 5, 25 5, 25	Draw Down D. 95 D. 95 D. 95 D. 95 D. 95 D. 95	Temperature (°C) 6.61 6.84 6.09 6.05 6.09 6.10	FIELD WAT Spec. Cond. (µ5/cm) ^c 0.80 Z. 0.799 0.799 0.798 0.796 0.796	PER QUALITY I D.O. (%) 7.5 9.6 8.9 7.5 8.3 7.4 AL SAMPLE IN Additional Sa	D.O. (mg/L) 0. 9 Z 1. 16 1. 17 0. 9 Z 1. 0 Z 0. 86	6.40 5.96 6.13 6.28 6.35 6.35	(mV) -31.4 -7.2 -6.1 -23.2 -21.5 -20.3	(NTU) 6/7 9/.0 3/.0 /8./ 16.7 12.2	Notes:		Fe!
WPLE DESCRIPTION OF THE PROPERTY OF THE PROPER	Flow Rate (mL/min) 460 460 460 460 460	Water Level 5, 25 5, 25 5, 25 5, 25 5, 25	Draw Down D. 95 D. 95 D. 95 D. 95 D. 95 D. 95	Temperature (°C) 6.61 6.84 6.09 6.05 6.09 6.10	FIELD WAT Spec. Cond. (µ5/cm) ^c 0.80 Z. 0.799 0.799 0.798 0.796 0.796	ER QUALITY I D.O. (%) 7.5 9.6 8.9 7.5 8.3 7.4	D.O. (mg/L) 0. 9 Z 1. 16 1. 17 0. 9 Z 1. 0 Z 0. 86	6.40 5.96 6.13 6.28 6.35 6.35	(mV) -31.4 -7.2 -6.1 -23.2 -21.5 -20.3	(NTU) 6/7 9/.0 3/.0 /8./ 16.7 12.2	Notes:		Fe/
MPLE DESCRETORY, free productions, free producti	Flow Rate (mt/min) 460 460 460 460 460	Water Level 5, 25 5, 25 5, 25 5, 25 5, 25	Draw Down Draw Down	Temperature (°C) 6.61 6.84 6.09 6.05 6.09 6.10	FIELD WAT Spec. Cond. (µ5/cm) ^c 0.80 Z. 0.799 0.799 0.798 0.796 0.796	PER QUALITY I D.O. (%) 7.5 9.6 8.9 7.5 8.3 7.4 AL SAMPLE IN Additional Sa	D.O. (mg/L) 0. 9 Z 1. 16 1. 17 0. 9 Z 1. 0 Z 0. 86	6.40 5.96 6.13 6.28 6.35 6.35	(mV) -31.4 -7.2 -6.1 -23.2 -21.5 -20.3	(NTU) 6/7 9/.0 3/.0 /8./ 16.7 12.2	Notes:		Fe/
MPLE DESCRETOR OF THICKNESS, Carbidity Time 029 034 034 039 044 044 054 054 054 054 054 054 054 054	Flow Rate (mL/min) 460 460 460 460 460 460 460	Water Level 5, 25 5, 25 5, 25 5, 25 5, 25 5, 25	Draw Down D. 95 D. 95 D. 95 D. 95 D. 95 D. 95	Temperature (°C) 6.61 6.84 6.09 6.05 6.09 6.10 ation	FIELD WAT Spec. Cond. (µ5/cm) ^c 0.80 Z. 0.799 0.799 0.798 0.796 0.796	PER QUALITY I D.O. (%) 7.5 9.6 8.9 7.5 8.3 7.4 AL SAMPLE IN Additional Sa	D.O. (mg/L) 0. 9 Z 1. 16 1. 17 0. 9 Z 1. 0 Z 0. 86	6.40 5.96 6.13 6.28 6.35 6.35	(mV) -31.4 -7.2 -6.1 -23.2 -21.5 -20.3	(NTU) 6/7 9/.0 3/.0 /8./ 16.7 12.2	Notes:		Re/

Altena	ntna			GROU		TER SAN	IPLING	PROJE NUMBI 20 266.0 6	ER:	WELL NUM		9	SHEET:
PROJECT NAME	AK	Roel E	skike		W	ELL CONDITION	Good			DIAMETER	O.D.	I.D.	VOLUME (GAL/LIN FT)
CLIENT		EC	7141 C		DA	MAGE PRESENT			(114)	(27)	2.375"	2.067"	0.17
DATE	5/14/14	- 11"				PTH TO WATER (FROM TOC)	6.5	7 f+	9	3"	3.5"	3.068"	0.38
SITE	Sh	ip Creek	RV 10	+		(FROM TOC)	11.82	F+		4"	4.5"	4.026°	0.66
GEOLOGIST	AG/E	F			HE	IGHT OF WATER COLUMN	5.2			6"	6. 625 "	6.065°	1.5
WEATHER/ TEMPERATURE	65	GUMY				WELL VOLUME	0.21	gal		8"	8.625"	7.981"	2.6
WIND	light	/						,					
SAMPLE TYPE	IGW	1			5	SAMPLING DA	TA						
PRODUCT, OT	HER):	Gova	Junter										
SAMPLE COLLI WITH:	ECTED		Bailer	,		Pump	ř	Oth	ner, Specif	y:			
MADE OF	ŧ	X.	Stainless :	Steel	•	PVC							
		X	Teflon		λ	Dispo	sable LDPE	Oth	ner, Specif	y:			
SAMPLING DE PROCEDUR		akon	40 t 1	water 1	irse								_\
SAMPLE DESCRI							W.						1
(color, free pro thickness, or													1
				-		-							
turbidity													
turbidity		?			FIELD WAT	ER QUALITY F	PARAMETERS						
turbidity TIME)	Water Level	Draw Down	Temperature (°F or °C)	FIELD WAT	ER QUALITY F	PARAMETERS	D.O. (%)	D.O. (mg/L)	Turbidity	1	Nor	Odor
TIME 1018	PUNGED VOLUME (GRE)	Water Level	-7,72	(°F or °C)	рн 5,32	Conductivity (µS/cm)	ORP 13.15	D.O. (%)	1.44	276	by	NWC	Odor NO
TIME	Flow Ru H PURCED VOLUMETORE) 200 250	Water Level	-7,72 0,69	(°For°C) 4,41 4,32	рн 5,32 5,69	Conductivity (µS/cm) 517	ORP 173.15 72.9	D.O. (%)		276	by	ar	
TIME 1018 1028 1028	Flow Ru F PURCED- VOLUME (GAL) 250 250 200	Water Level	-7,72	4,41 4,41 4,32 3,95 4,35	рн 5,32 5,69	Conductivity (µS/cm)	ORP V4315 72.9 (93.6)	D.O. (%)	1.44 0.42 0.49	276 48.1 20.6 18.2	0 / e e e e e e e e e e	av av	
TIME 1018 1023 1028 1034 1038	PLOW RULY PURCED VOLUME (GRE) 200 200 200 200 200	Water Level	-7,72 0,69	("For "C) 4,41 4,32 3,95 4,35 4,13	5,32 5,09 5,94 5,91 6,04	Conductivity (µS/cm) .517 .590 .602 .595	ORP 17315 72.9 (93.6) (93.4) 51.8	0.0.(%) 11.11 3.3 3.7 2.8	1.44 0.42 0.49 0.43 0.36	276 48.1 20.6 18.2	ON Cle Cle	av av av	
TIME 1018 1028 1028	Flow Ru F PURCED- VOLUME (GAL) 250 250 200	Water Level	-7,72 0,49 .33	4,41 4,41 4,32 3,95 4,35	5,32 5,09 5,94 5,91 6,04	Conductivity (µS/cm) .517 .590 . 402 .595 . 1005	ORP 173,15 72,9 (93, 6) (93, 4) 51,8 50,1	0.0.(%) 11.11 3.3 3.7 3.3 2.8 2.7	1.44 0.42 0.49 0.43 0.36 0.36	270 48.1 20.6 18.1 18.0	ON Cle Cle Cle Cle	OWN CAY COV COV	
1018 1023 1028 1034 1038 1043	PUNCED VOLUME (GRAL) 250 250 200 200 200 200 200	Water Level	-7,72 0,49 .33	1,41 4,41 4,32 3,95 4,35 4,13 4,10	5,32 5,09 5,94 5,91 6,04	Conductivity (µS/cm) .517 .590 . 402 .595 . 1005	ORP 17315 72.9 (93.6) (93.4) 51.8	0.0.(%) 11.11 3.3 3.7 3.3 2.8 2.7	1.44 0.42 0.49 0.43 0.36	270 48.1 20.6 18.1 18.0	ON Cle Cle	OWN CAY COV COV	
1018 1023 1028 1034 1038 1043	PUNCED VOLUME (GRAL) 250 250 200 200 200 200 200	Water Level	-7,72 0,49 .33	1,41 4,41 4,32 3,95 4,35 4,13 4,10	5,32 5,09 5,94 5,91 6,04	Conductivity (µS/cm) .517 .590 . 402 .595 . 1005	ORP 173,15 72,9 (93, 6) (93, 4) 51,8 50,1	0.0.(%) 11.11 3.3 3.7 3.3 2.8 2.7	1.44 0.42 0.49 0.43 0.36 0.36	270 48.1 20.6 18.1 18.0	ON Cle Cle Cle Cle	OWN CAY COV COV	
TIME 1018 10.23 10.28 10.34 10.38 10.43	PUNCED VOLUME (GRAL) 250 250 200 200 200 200 200	Water Level	-7,72 0,49 .33	1,41 4,41 4,32 3,95 4,35 4,13 4,10	5,32 5,09 5,94 5,91 6,04	Conductivity (µS/cm) .517 .590 . 402 .595 . 1005	ORP 173,15 72,9 (93, 6) (93, 4) 51,8 50,1	0.0.(%) 11.11 3.3 3.7 3.3 2.8 2.7	1.44 0.42 0.49 0.43 0.36 0.36	270 48.1 20.6 18.1 18.0	ON Cle Cle Cle Cle	OWN CAY COV COV	
1018 1023 1028 1034 1038 1043	PUNCED VOLUME (GRAL) 250 250 200 200 200 200 200	Water Level	-7,72 0,49 .33	1,41 4,41 4,32 3,95 4,35 4,13 4,10	5,32 5,94 5,94 5,91 6,04	Conductivity (µS/cm) .517 .590 . 402 .595 . 1005	0RP 14315 72.9 (43.4) (43.4) 51.8 50.12	0.0.(%) 11.11 3.3 3.7 2.8 2.17	1.44 0.42 0.49 0.43 0.36 0.36	276 78.1 20.6 18.1 18.0 17.4 18.0	ON CLO CLO CLO	OWN CAY COV COV	
TIME 1018 10 27 1028 1034 1038 1043 1047	PURGED VOILUME (GRIL) 250 200 200 200 200 200 200 20	Water Level 4 1,25 6,90 9,90 10,90 10,90	-7, 72 0,69 .33	("For "C) 4,41 4,32 3,95 4,35 4,10 4,10	5,32 5,94 5,94 5,91 6,04	Conductivity (µs/cm) 1517 1590 1602 1905 1005	ORP 14315 32.9 43.4 51.8 50.12	0.0.(%) 11.11 3.3 3.7 2.8 2.7	1.44 0.42 0.49 0.43 0.36 0.36	2710 78.1 20.4 18.1 18.0 17.4 18.0	OW CAR CAR CAR CAR CAR CAR CAR CAR CAR CAR	DWN CAY CAY COV CAY	no V
TIME 1018 10.27 10.28 10.34 10.38 10.43 10.47	PURGED VOILUME (GRIL) 250 200 200 200 200 200 200 20	Water Level 4 1,25 6,90 9,90 10,90 10,90	-7, 72 0,69 .33	4,41 4,32 3,95 4,35 4,13 4,10	5,32 5,94 5,94 5,91 6,04	Conductivity (µs/cm) 1517 1590 1602 1905 1906 AL SAMPLE IN	ORP 143.15 22.9 (93.4) 51.8 70.1	0.0.(%) 11.11 3.3 3.7 2.8 2.7	1.44 0.42 0.49 0.43 0.34 0.36	2710 78.1 20.4 18.1 18.0 17.4 18.0	OW CAR CAR CAR CAR CAR CAR CAR CAR CAR CAR	DWN CAY CAY COV CAY	no V
TIME 10/8 10/28 10/28 10/34 10/38 10/47 10/47 Analyte VOC PRO/RRS	PURGED VOILUME (GRIL) 250 200 200 200 200 200 200 20	Water Level 4 1,25 6,90 9,90 10,90 10,90	-7, 72 0,69 .33	("For "C) 4,41 4,32 3,95 4,35 4,10 4,10	5,32 5,94 5,94 5,91 6,04 1,06 6,08	Conductivity (µS/cm) 1517 1590 1602 1905 1909 AL SAMPLE IN	ORP 143.15 22.9 (93.4) 51.8 70.1	0.0.(%) 11.11 3.3 3.7 2.8 2.7	1.44 0.42 0.49 0.43 0.34 0.36	2710 78.1 20.4 18.1 18.0 17.4 18.0	OW CAR CAR CAR CAR CAR CAR CAR CAR CAR CAR	DWN CAY CAY COV CAY	no V
TIME 1018 10.27 10.28 10.34 10.38 10.43 10.47	PURGED VOILUME (GRIL) 250 200 200 200 200 200 200 20	Water Level 4 1,25 6,90 9,90 10,90 10,90	-7, 72 0,69 .33	("For "C) 4,41 4,32 3,95 4,35 4,10 4,10	5,32 5,94 5,94 5,91 6,04 1,06 6,08	Conductivity (µS/cm) 1517 1590 1602 1905 1909 AL SAMPLE IN	ORP 143.15 22.9 (93.4) 51.8 70.1	0.0.(%) 11.11 3.3 3.7 2.8 2.7	1.44 0.42 0.49 0.43 0.34 0.36	276 78.1 20.6 18.1 18.0 17.4 18.0	OW CAR CAR CAR CAR CAR CAR CAR CAR CAR CAR	DWN CAY CAY COV CAY	no V

datalogger = 11.371

	atna			GROU	INDWA	TER SAM	PLING	PROJECT NUMBER	.	VELL NUM		9	SHEET:
Eng	ineering				FC	DRM		202660		nw-l	25	1	of /
PROJECT NAME	Alast	ca kea	Al Es	Haft	W	ELL CONDITION	apod			NOMINAL DIAMETER	O.D.	I.D.	VOLUME (GAL/LIN FT)
CLIENT	ADEC.				DA	MAGE PRESENT	None			(2")	2.375"	2.067"	0.17
DATE	5/13/	14				PTH TO WATER (FROM TOC)	6.3	14.		3"	3.5"	3.068"	0.38
SITE	WW.	129			D	EPTH TO BASE (FROM TOC)	9.35	St.		4"	4.5"	4.026"	0.66
GEOLOGIST	8.1	milu	Freit	US		IGHT OF WATER	3.05	R.		6"	6.625"	6.065"	1.50
WEATHER/ TEMPERATURE	11	sunno	1		v	WELL VOLUME	,5185	gal		8"	8.625"	7.981"	2.60
WIND	lian		10ez2	!				100.					
					S	AMPLING DA	TA		A				
PRODUCT, O		aw											
SAMPLE COLL WITH:		Bailer			Y Pum	p, Type: Bla	dder	(Other, Sp	ecify:			
MADEO	_	– ´Stainless	Stool		PVC					e consideration of the constant of the constan			
	****	Teflon	Steel			osable LDPE		(Other, Sp	ecify:			
SAMPLING D	ECON ,	-	1.0	laux	Displ	D3able EDI L		`	Julier, Sp	echy.			
PROCEDU	RE: A	Iconox	+ Ma	· L		1	2 0 1						
SAMPLE DESCR		lur	W	17/1	an c	idor 1	resent	/					
(color, free pa						l.							
	COMPANIES CONTRACTOR	-	-										
turbidity	COMPANIES CONTRACTOR					1							
	COMPANIES CONTRACTOR				FIELD WAT	ER QUALITY P	ARAMETERS						
	Flow Rate (mL/min)	Water Level	Draw Down	Temperature (°C) ° 2	Spec. Cond.	ER QUALITY P	D.O.	pH 1	ORP (mV)	Turbidity (NTU)	Co	lor	Odor
Time	Flow Rate (mL/min)	6.35	0.2	7.05		D.O. (%) 10	D.O. (mg/L) /0	6.31	(mV) 869	(NTU) 55 1	RPI	1	Niche
Time 13.24	Flow Rate (mL/min)	6.45	0.15	7.05 5.47	Spec. Cond. (μS/cm) ^c 31. 207	33.3 30.0	D.O. (mg/L) /0.	6.31	869 863	(NTU) 55 1 194	Rec	1	None
Time 13.24 13.30 13.35	Flow Rate (mL/min)	6.45	0.2	7.05 5.47 4.99	Spec. Cond. (µS/cm) ^c 3!. 207 202 20b	33.3 30.8 26.9	D.O. (mg/L) 10. 4.01 4.01 2.65	5.9 5.9	(mV) 869 863 674	(NTU) 55 1 194 57.1	Rec	d	None None Hes
Time 13.24 13.20 13.35 13.40	Flow Rate (mL/min)	6.45 6.45	0.15	7.05 5.47 4.99 4.76	Spec. Cond. (μs/cm) ^c 31. 207 202 20b 207	33.3 30.0 20.9	D.O. (mg/t) 10. 4.01 4.01 2.65 3.39	5.9 5.9 5.92	(mV) 869 863 674 55.7	(NTU) 55 1 194 57.1 23.3	Red Red Chell	1 d ay	Nune None 1185 1185
Time 13.24 13.30 13.35	Flow Rate (mL/min)	6.45	0.15	7.05 5.47 4.99	Spec. Cond. (µS/cm) ^c 3!. 207 202 20b	33.3 30.8 26.9	D.O. (mg/L) /0 4.01 4.01 2.65 3.39 2.44	5.9 5.9	(mV) 869 863 674 55.7 43.2	(NTU) 55 1 194 57.1 23.3	Rec	1 d u u u	None None Hes
Time 13.24 13.30 13.35 13.40 13.45	Flow Rate (mL/min)	6.45	0.15	7.05 5.47 4.99 4.76 4.77	Spec. Cond. (μs/cm) ^c 31. 207 202 206 207 207	0.0. (%) 10 33.3 30.0 20.9 26.7	D.O. (mg/t) 10. 4.01 4.01 2.65 3.39	5.9 5.92 6.06	(mV) 869 863 674 55.7	(NTU) 55 1 194 57.1 23.3	Rec Rec CHEU CHEU	1 d u u u	None None 1185 1185 1185
Time 13.24 13.30 13.35 13.40 13.45	Flow Rate (mL/min)	6.45	0.15	7.05 5.47 4.99 4.76 4.77	Spec. Cond. (μs/cm) ^c 31. 207 202 206 207 207	0.0. (%) 10 33.3 30.0 20.9 26.7	D.O. (mg/L) /0 4.01 4.01 2.65 3.39 2.44	5.9 5.92 6.06	(mV) 869 863 674 55.7 43.2	(NTU) 55 1 194 57.1 23.3	Rec Rec CHEU CHEU	1 d u u u	None None 1185 1185 1185
Time 13.24 13.20 13.35 13.40 13.45	Flow Rate (mL/min)	6.45 6.45 6.5 6.5	0.15	7.05 5.47 4.99 4.76 4.77	Spec. Cond. (μs/cm) ^c 31. 207 202 206 207 207	0.0. (%) 10 33.3 30.0 20.9 26.7	D.O. (mg/L) /0 4.01 4.01 2.65 3.39 2.44	5.9 5.92 6.06	(mV) 869 863 674 55.7 43.2	(NTU) 55 1 194 57.1 23.3	Rec Rec CHEU CHEU	1 d u u u	None None 1185 1185 1185
Time 13.24 13.30 13.35 13.40 13.45	Flow Rate (mL/min)	6.45	0.15	7.05 5.47 4.99 4.76 4.77	Spec. Cond. (μs/cm) ^c 31. 207 202 206 207 207	0.0. (%) 10 33.3 30.0 20.9 26.7	D.O. (mg/L) /0 4.01 4.01 2.65 3.39 2.44	5.9 5.92 6.06	(mV) 869 863 674 55.7 43.2	(NTU) 55 1 194 57.1 23.3	Rec Rec CHEU CHEU	1 d u u u	None None 1185 1185 1185
Time 13.24 13.20 13.35 13.40 13.45	Flow Rate (mL/min)	6.45 6.45 6.5 6.5	0.15	7.05 5.47 4.99 4.76 4.77	Spec. Cond. (μS/cm) ^c 31. 207 202 20b 207 207 207 208	0.0. (%) 10 33.3 30.0 20.9 26.7	D.O. (mg/L) 10 4.01 4.01 2.65 3.39 2.44 2.31	5.9 5.92 6.06	(mV) 869 863 674 55.7 43.2	(NTU) 55 1 194 57.1 23.3 1).9 11.9	Rec Rec Che Che Che	1 d u u u	None None 1185 1185 1185
Time 13.24 13.20 13.35 13.40 13.45	Flow Rate (mL/min)	6.45 6.45 6.5 6.5	0.15	7.05 5.47 4.99 4.76 4.77 4.80	Spec. Cond. (μS/cm) ^c 31. 207 202 20b 207 207 207 208	0.0. (%) 10 33.3 30.8 20.9 24.7 19.3 18.2	D.O. (mg/t) /0. 4.01 4.01 2.65 3.39 2.44 2.31	6.31 5.9 5.92 6.06 6.21 6.29	(mV) 869 863 674 55.7 43.2	(NTU) 55 1 194 57.1 23.3 1).9 11.9	RPO Rec Che Che Che Che		None None Hes Hes
Time 13.24 13.30 13.35 13.40 13.45 13.50 14.00 Analyte	Flow Rate (mL/min)	6.45	0.2 0.15 0.2	7.05 5.47 4.99 4.76 4.77 4.80	Spec. Cond. (μS/cm) ^c 7!. 207 202 20b 207 207 207 208	D.O. (%) 10 33.3 30.0 20.9 19.3 18.2	D.O. (mg/L) /0. 4.01 4.01 2.65 3.39 2.44 2.31	6.31 5.9 5.92 6.06 6.21 6.29	(mV) 869 863 (67.4 55.7 43.2 37.6	(NTU) 55 1 194 57.1 23.3 11.9 11.9	RPO Rec Che Che Che Che Che Che Che Che Che Che	in in	None None Hes Hes
Time 13.24 13.30 13.35 13.40 13.45 13.50 14.00 Analyte VOC Dhc	Flow Rate (mL/min)	6.45	0.2 0.15 0.2	(°C) • 2 7.05 5.47 4.99 4.76 4.77 4.80	Spec. Cond. (μS/cm) ^c 7!. 207 202 20b 207 207 207 208	D.O. (%) 10 33.3 30.0 20.9 26.7 19.3 18.2	D.O. (mg/L) /0. 4.01 4.01 2.65 3.39 2.44 2.31	6.31 5.9 5.92 6.06 6.21 6.29	(mV) 869 863 (67.4 55.7 43.2 37.6	(NTU) 55 1 194 57.1 23.3 11.9 11.9	RPO Rec Che Che Che Che Che Che Che Che Che Che	in in	None None Hes Hes
Time 13.24 13.30 13.35 13.40 13.45 13.50 14.00 Analyte Voc	Flow Rate (mL/min)	6.45	0.2 0.15 0.2	(°C) • 2 7.05 5.47 4.99 4.76 4.77 4.80	Spec. Cond. (μS/cm) ^c 7!. 207 202 20b 207 207 207 208	D.O. (%) 10 33.3 30.0 20.9 26.7 19.3 18.2	D.O. (mg/L) /0. 4.01 4.01 2.65 3.39 2.44 2.31	6.31 5.9 5.92 6.06 6.21 6.29	(mV) 869 863 (67.4 55.7 43.2 37.6	(NTU) 55 1 194 57.1 23.3 11.9 11.9	RPO Rec Che Che Che Che Che Che Che Che Che Che	in in	None None Hes Hes
Time 13.24 13.30 13.35 13.40 13.45 13.50 14.00 Analyte VOC Dhc MNA	Flow Rate (mL/min)	6.45	0.2 0.15 0.2	(°C) • 2 7.05 5.47 4.99 4.76 4.77 4.80	Spec. Cond. (μS/cm) ^c 7!. 207 202 20b 207 207 207 208	D.O. (%) 10 33.3 30.0 20.9 26.7 19.3 18.2	D.O. (mg/L) /0. 4.01 4.01 2.65 3.39 2.44 2.31	6.31 5.9 5.92 6.06 6.21 6.29	(mV) 869 863 (67.4 55.7 43.2 37.6	(NTU) 55 1 194 57.1 23.3 11.9 11.9	RPO Rec Che Che Che Che Che Che Che Che Che Che	in in	None None Hes Hes

	Ahtna			GROU	NDWA	TER SAM	IPLING	PROJEC		WELL NUM	BER:		SHEET:			
Eng	jineering				FO	RM		20266	1	NM -	13	1	of			
PROJECT NAME	= Alas	Fa Re	albst	atl	WE	LL CONDITION	9000			NOMINAL DIAMETER	O.D.	I.D.	VOLUME (GAL/LIN FT)			
CLIENT	ADEC				DAI	MAGE PRESENT	none			(2")	2.375"	2.067"	0.17			
DATE	5/13/	14				PTH TO WATER (FROM TOC)	6.95	St.		3"	3.5"	3.068 st	0.38			
SITE	mw-	13				EPTH TO BASE (FROM TOC)	9.2	St.		4"	4.5"	4.026*	0.66			
GEOLOGIST	Emi	N	Freito	19	HEI	GHT OF WATER COLUMN	2.25	ff.		6"	6.625*	6.065"	1.50			
WEATHER/ TEMPERATURE	56"	Sunn	14			VELL VOLUME	3825	gall	ens	8"	8.625*	7.981"	2.60			
WIND	sligh	at by	beze	,				7								
SAMPLE TYPE	IGN -	-			S	AMPLING DA	TA									
PRODUCT, OT	THER):	W														
SAMPLE COLL WITH:		Bailer			X Pump	o, Type: <u>\</u>	addev		Other, Sp	ecify:						
MADE O	F:	Stainless	Steel		PVC											
	V	Teflon b	ladder	V	Dispo	sable LDPE			Other, Sp	ecify:						
SAMPLING D	ECON A	(MUX	+ wa	fer												
SAMPLE DESCR	HIPTION:	lear	, 00		resent.											
(color, free pr	roduct	10001	1 1/0	1 N	10301.1	•					-		-			
	-				1000											
turbidity	()															
turbidity	/)				FIELD WAT	ER QUALITY F	ARAMETERS									
turbidity Time	Flow Rate	Water Level	Draw Down	Temperature	Spec. Cond.	D.O.	D.O.	рн О- 1	ORP (mV)	Turbidity (NTU)	Ca	lor	Odor			
	Flow Rate (mL/min)	7.10	Draw Down	Temperature (°C) ©·2					(mV) -14.9	(NTU) 12.9	CIC		Odor V 65			
Time 1505	Flow Rate (mt/min)	7.1	0.05	4.03 5.04	Spec. Cond. (μS/cm) ^c A/ 0.337	D.O. (%) 31.1 32.3	0.0. (mg/L) 3.87 4.13	(0.75 (0.34	(mV) -14.9 22.9	(NTU) 12.9	CIPO	ar	yes lyes			
Time 1505 1512 1520	Flow Rate (mt/min) 400 450 450	7.10	0.15	4.60	Spec. Cond. (μS/cm) ^c 3λ 0 · 337 0 · 336 0 · 335	0.0. (%) 31.1 32.3 37.7	0.0. (mg/L) 3.87 4.13 4.87	рно.1 (0.75 (0.34 (6.38	(mV) -16.9 22.9 23.9	(NTU) 12.9 18-2-6-1 5.4	CIE	ar Par	yes yes			
Time 1505	Flow Rate (mt/min)	7.1	0.05	4.03 5.04	Spec. Cond. (μS/cm) ^c A/ 0.337	D.O. (%) 31.1 32.3	0.0. (mg/L) 3.87 4.13	(0.75 (0.34	(mV) -14.9 22.9	(NTU) 12.9 18-2-6-1 5.4	C100	ar	yes lyes			
Time 1505 1512 1520 1523	Flow Rate (mL/min) 400 450	7.1	0.15	4.03 5.04 4.60 4.52	Spec. Cond. (μS/cm) ^c 3λ 0 · 337 0 · 336 0 · 335	5.0. (%) 31.1 32.3 37.7 42.8	0.0. (mg/L) 3.87 4.13 4.87 5.48	рно.1 (0.75 (0.34 (2.28 (6.36	(mV) -14.9 22.9 23.9 26.6	(NTU) 12.9 82.60 5.4	C100	ar Par Par	yes yes yes			
Time 1505 1512 1520 1523	Flow Rate (mL/min) 400 450	7.1	0.15	4.03 5.04 4.60 4.52	Spec. Cond. (μS/cm) ^c 3λ 0 · 337 0 · 336 0 · 335	5.0. (%) 31.1 32.3 37.7 42.8	0.0. (mg/L) 3.87 4.13 4.87 5.48	рно.1 (0.75 (0.34 (2.28 (6.36	(mV) -14.9 22.9 23.9 26.6	(NTU) 12.9 82.60 5.4	C100	ar Par Par	yes yes yes			
Time 1505 1512 1520 1523	Flow Rate (mL/min) 400 450	7.1	0.15	4.03 5.04 4.60 4.52	Spec. Cond. (μS/cm) ^c 3λ 0 · 337 0 · 336 0 · 335	5.0. (%) 31.1 32.3 37.7 42.8	0.0. (mg/L) 3.87 4.13 4.87 5.48	рно.1 (0.75 (0.34 (2.28 (6.36	(mV) -14.9 22.9 23.9 26.6	(NTU) 12.9 82.60 5.4	C100	ar Par Par	yes yes yes			
Time 1505 1512 1520 1523	Flow Rate (mL/min) 400 450	7.1	0.15	4.03 5.04 4.60 4.52	Spec. Cond. (μS/cm) ^c 3λ 0 · 337 0 · 336 0 · 335	5.0. (%) 31.1 32.3 37.7 42.8	0.0. (mg/L) 3.87 4.13 4.87 5.48	рно.1 (0.75 (0.34 (2.28 (6.36	(mV) -14.9 22.9 23.9 26.6	(NTU) 12.9 82.60 5.4	C100	ar Par Par	yes yes yes			
Time 1505 1512 1520 1523	Flow Rate (mL/min) 400 450	7.1	0.15	4.03 5.04 4.60 4.52	Spec. Cond. (μS/cm) ^c 3λ. 0 · 337 0 · 336 0 · 335 0 · 335 0 · 336	5.0. (%) 31.1 32.3 37.7 42.8 39.4	D.O. (mg/L) 3.87 4.13 4.87 5.48 5.05	рно.1 (0.75 (0.34 (2.28 (6.36	(mV) -14.9 22.9 23.9 26.6	(NTU) 12.9 82.60 5.4	C100	ar Par Par	yes yes yes			
Time 1505 1512 #520 1523 1530	Flow Rate (mL/min) 400 450	7.1	0.15 0.15 0.15 0.15	(c) 0.2 (c) 0.3 (c) 0.3 (c) 0.4 (c) 0.4 (c) 0.2 (c) 0.2 (c) 0.2 (c) 0.2 (c) 0.2 (c) 0.3 (c) 0.	Spec. Cond. (μS/cm) ^c 3λ. 0 · 337 0 · 336 0 · 335 0 · 335 0 · 336	D.O. (%) 3/./ 32.3 37.7 42.8 39.4	D.O. (mg/L) 3.87 4.13 4.87 5.48 5.05	рно. 1 (0.75 (0.34 (6.38 (6.36 (6.53	(mV) -16.9 22.9 23.9 26.6 26.6	(NTU) 12.9 (\$2-(0) 5.4 (\$1)(6 5.85	C160	ar Par Par	yes yes yes			
Time 1505 1512 1520 1523 1530 Analyte	Flow Rate (mt/min) 400 450 450 450 450	7.18	0.15 0.15 0.15 0.15	(c) 0.2 (4.03) 5.04 (4.60) 4.82 4.71	Spec. Cond. (μS/cm) ^c 3/2 (μS/cm) ^c 3/3 (μS/cm)	D.O. (%) 3/./ 32.3 37.7 42.8 39.4	D.O. (mg/L) 3.87 4.13 4.87 5.18 5.05	рно. 1 (0.75 (0.34 (6.38 (6.36 (6.53	(mV) -14.9 22.9 23.9 26.6	(NTU) 12.9 3.4 5.45 5.85	CIEC LE	av Pav av av	yes yes yes yes			
Time 1505 1512 1520 1523 1530 Analyte Voc 1	Flow Rate (mt/min) 400 450 450 450 450	7.18	0.15 0.15 0.15 0.15	(c) 0.2 (c) 0.3 (c) 0.3 (c) 0.4 (c) 0.4 (c) 0.2 (c) 0.2 (c) 0.2 (c) 0.2 (c) 0.2 (c) 0.3 (c) 0.	Spec. Cond. (μS/cm) ^c 3/2 (μS/cm) ^c 3/3 (μS/cm)	D.O. (%) 3/./ 32.3 37.7 42.8 39.4	D.O. (mg/L) 3.87 4.13 4.87 5.18 5.05	рно. 1 (0.75 (0.34 (6.38 (6.36 (6.53	(mV) -16.9 22.9 23.9 26.6 26.6	(NTU) 12.9 3.4 5.45 5.85	CIEC LE	av Pav av av	yes yes yes yes			
Time 1505 1512 1520 1523 1530 Analyte	Flow Rate (mt/min) 400 450 450 450 450	7.18	0.15 0.15 0.15 0.15	(c) 0.2 (4.03) 5.04 (4.60) 4.82 4.71	Spec. Cond. (μS/cm) ^c 3/2 (μS/cm) ^c 3/3 (μS/cm)	D.O. (%) 3/./ 32.3 37.7 42.8 39.4	D.O. (mg/L) 3.87 4.13 4.87 5.18 5.05	рно. 1 (0.75 (0.34 (6.38 (6.36 (6.53	(mV) -16.9 22.9 23.9 26.6 26.6	(NTU) 12.9 3.4 5.45 5.85	CIEC LE	av Pav av av	yes yes yes yes			
Time 1505 1512 1520 1523 1530 Analyte VOC 1	Flow Rate (mt/min) 400 450 450 450 450	7.18	0.15 0.15 0.15 0.15	(c) 0.2 (4.03) 5.04 (4.60) 4.82 4.71	Spec. Cond. (μS/cm) ^c 3/2 (μS/cm) ^c 3/3 (μS/cm)	D.O. (%) 3/./ 32.3 37.7 42.8 39.4	D.O. (mg/L) 3.87 4.13 4.87 5.18 5.05	рно. 1 (0.75 (0.34 (6.38 (6.36 (6.53	(mV) -16.9 22.9 23.9 26.6 26.6	(NTU) 12.9 3.4 5.45 5.85	CIEC LE	av Pav av av	yes yes yes			

	1			GROU	NDWA	TER SAN	IPLING	PROJE		WELL NUM	BER:	9	SHEET:
Eng	ineering					RM		20266	800	MW - 3	18	,1	of J
PROJECT NAME	AKRE	pal Es	state		WE	LL CONDITION	900	d		NOMINAL DIAMETER	O.D.	I.D.	VOLUME (GAL/LIN FT)
CLIENT	ADE				DAF	MAGE PRESENT	hor			(2")	2.375*	2.067"	0.17
DATE	5/14	114				PTH TO WATER (FROM TOC)	8-85	ft.		3"	3.5™	3.068*	0.38
SITE	Min	1-18			DI	EPTH TO BASE (FROM TOC)	11,17	A.		4"	4.5"	4.026*	0.66
GEOLOGIST	8 r	nilu	(Ve	itas		GHT OF WATER COLUMN	2,32	- {}.		6"	6.625*	6.065"	1.50
WEATHER/ TEMPERATURE	65° 51	unny			v	VELL VOLUME	,39 gel			8"	8.625"	7.981 ^{ss}	2.60
WIND	liant		10					1					
	J				S	AMPLING DA	TA						
PRODUCT, OT	HER):	JM											
SAMPLE COLLI WITH:	ECTED	Bailer			Pum	p, Type: <u>6</u>	ladder	· .	Other,	Specify:			
MADE OF	: ×	Stainless	Steel	-	PVC								
	×	Teflon				osable LDPE			Other,	Specify:			
SAMPLING DE	ECON	-	nnx +	- wat			, , , , , , , , , , , , , , , , , , ,		•				
PROCEDUR			with	10(1)	Ocla					, i			
SAMPLE DESCRI (color, free pr		Clear	77117	1 710	UCIVI								
thickness, o turbidity				1									
					FIELD WAT	ER QUALITY	PARAMETERS						
Time	Flow Rate	Water Level	Draw Down	Temperature	Spec. Cond.	D.O.	PARAMETERS D.O.		ORP	Turbidity	T	olor	Odor
Time	Flow Rate (mL/min)	Water Level		Temperature (°C)	Spec. Cond. (μS/cm) ^C	D.O. (%)	D.O. (mg/L)	рН	ORP (mV)	(NTU)		olor	Odor N/O
Time 54 % 1952	(mL/min) 220 220	Water Level	,30 • 30	8.17	Spec. Cond.	D.O.	D.O.		20 00	(NTU)		olor PG /	Odor (V O
548 1952 1555	(mL/min) 220 220 220	8165 8.65 8.65	.30 .30 ,20	8.17 6.64 6.45	\$pec. Cond. (µ\$/cm) ^c 1003 1598	13.3 51	0.0. (mg/L) 1.51 0.62	6.92 6.73 6.69	(mV) -0,2 -1,8	8.92 - 7.66 - 5.02	C		10000
548 1952 1555 1559	(mt/min) 220 220 220 220	8,65 8,65 8,65	.30 .30 .20	8117 6164 6,45	\$pec. Cond. (μ\$/cm) ^c (μ0/3) 598 1600	0.0. (%) 13.3 511 411 3,8	0.0. (mg/L) 1.51 0.62 0.51	pH 6,92 6,13 6,69 6,68	(mV) -1.2 -1.8	(NTU) 8.92 - 7.66 5.02 2.96	C		10000
548 1952 1555	(mL/min) 220 220 220	8165 8.65 8.65	.30 .30 ,20	8.17 6.64 6.45	\$pec. Cond. (µ\$/cm) ^c 1003 1598	13.3 51	0.0. (mg/L) 1.51 0.62	6.92 6.73 6.69	(mV) -0,2 -1,8	(NTU) 8.92 - 7.66 5.02 2.96	C	Pay	No.
548 1952 1555 1559	(mt/min) 220 220 220 220	8,65 8,65 8,65	.30 .30 .20	8117 6164 6,45	\$pec. Cond. (μ\$/cm) ^c (μ0/3) 598 1600	0.0. (%) 13.3 511 411 3,8	0.0. (mg/L) 1.51 0.62 0.51	pH 6,92 6,13 6,69 6,68	(mV) -1.2 -1.8	(NTU) 8.92 - 7.66 5.02 2.96	C	Pay	No.
548 1952 1555 1559	(mt/min) 220 220 220 220	8,65 8,65 8,65	.30 .30 .20	8117 6164 6,45	\$pec. Cond. (μ\$/cm) ^c (μ0/3) 598 1600	0.0. (%) 13.3 511 411 3,8	0.0. (mg/L) 1.51 0.62 0.51	pH 6,92 6,13 6,69 6,68	(mV) -1.2 -1.8	(NTU) 8.92 - 7.66 5.02 2.96	C	Pay	No.
548 1952 1555 1559	(mt/min) 220 220 220 220	8,65 8,65 8,65	.30 .30 .20	8117 6164 6,45	\$pec. Cond. (μ\$/cm) ^c (μ0/3) 598 1600	0.0. (%) 13.3 511 411 3,8	0.0. (mg/L) 1.51 0.62 0.51	pH 6,92 6,13 6,69 6,68	(mV) -1.2 -1.8	(NTU) 8.92 - 7.66 5.02 2.96	C	Pay	No.
548 1952 1555 1559	(mt/min) 220 220 220 220	8,65 8,65 8,65	.30 .30 .20	8117 6164 6,45	\$pec. Cond. (μ\$/cm) ^c (μ0/3) 598 1600	0.0. (%) 13.3 511 411 3,8	0.0. (mg/L) 1.51 0.62 0.51	pH 6,92 6,13 6,69 6,68	(mV) -1.2 -1.8	(NTU) 8.92 - 7.66 5.02 2.96	C	Pay	No.
548 1952 1555 1559	(mt/min) 220 220 220 220	8,65 8,65 8,65	.30 .30 .20	8117 6164 6,45	Spec. Cond. (μS/cm) ^c (μS/cm) ^c	0.0. (%) 13.3 511 4,1 3,8	0.0. (mg/L) 1.51 0.62 0.51	6.68 6.68	(mV) -1.2 -1.8	(NTU) 8.92 - 1.166 5.02 2.96 1.14		Pay	No.
548 1952 1555 1559	(ml/min) 220 220 220 220 220	8.65 8.65 8.65 8.65	30 20 20 20 20	(rc) 8 17 10 104 10 145 10 13 10 103	Spec. Cond. (µS/cm) ^c	0.0. (%) 13.3 511 41.1 3.8 3.8 AL SAMPLE IN	0.0. (mg/L) 1.51 0.92 0.51 0.48 NFORMATION	6.68 6.68	(mV) -1.2 -1.8	(NTU) 8.92 - 1.66 5.02 2.96 1.14	Notes:	PG /	No V
1992 1992 1959 1959 1969 1903	(ml/min) 220 220 220 220 220	8.65 8.65 8.65 8.65	30 20 20 20 20	(rc) 8 17 10 104 10 145 10 13 10 103	Spec. Cond. (µS/cm) ^c	D.O. (%) 13.3 511 411 3.8 3:8	0.0. (mg/L) 1.51 0.92 0.51 0.48 NFORMATION	6.68 6.68	(mV) 7 -0,2 -1,8 -5,2 -9,3	(NTU) 8.92 - 1.66 5.02 2.96 1.14	Notes:	PG /	No V
1952 1959 1959 1969 1903	(ml/min) 220 220 220 220 220	8.65 8.65 8.65 8.65	30 20 20 20 20	(rc) 8 17 10 104 10 145 10 13 10 103	Spec. Cond. (µS/cm) ^c	0.0. (%) 13.3 511 41.1 3.8 3.8 AL SAMPLE IN	0.0. (mg/L) 1.51 0.92 0.51 0.48 NFORMATION	6.68 6.68	(mV) 7 -0,2 -1,8 -5,2 -9,3	(NTU) 8.92 - 1.66 5.02 2.96 1.14	Notes:	PG /	No V
	(ml/min) 220 220 220 220 220	8.65 8.65 8.65 8.65	30 20 20 20 20	(rc) 8 17 10 104 10 145 10 13 10 103	Spec. Cond. (µS/cm) ^c	0.0. (%) 13.3 511 41.1 3.8 3.8 AL SAMPLE IN	0.0. (mg/L) 1.51 0.92 0.51 0.48 NFORMATION	6.68 6.68	(mV) 7 -0,2 -1,8 -5,2 -9,3	(NTU) 8.92 - 1.66 5.02 2.96 1.14		PG /	No V

	soil Boring Well Const	RUCTION					Boring Number: 4GMW-12 Project Number: 20266.008				
Project	: Name Alaska Real Estate	Recovery D	evice _[T 45			X/Y Coordinates 1663885.1/2637984.8				
Site Al	laska Real Estate Parking Lot		neter _	1.5 -inch							
Client _											
Field Sc	cientist/Engineer Olga Stewart	# of Sample	s <u>0</u>				Elevation Datum NAVD88 ft				
Date _5	5/8/2014	_ Drilling Con	npany _	GeoTek A	Alaska		Extra Field Notes:				
Weath	er Sunny	Rig Type _G	eoprobe	8040							
Total D	Pepth 30 feet bgs	Hammer Dr	op & W	eight _	N/A						
	Size 4.5 -inch										
COLORTEC READING (ppm)	SOIL DESCRIPTION AND NOTES		SOIL GRAPHIC	о <u>DEPTH</u> (ft)	WATER LEVEL	WELL GRAPHIC	WELL DESCRIPTION				
0	SAND (SP); brown; dense; damp; silt obsessilt with organics observed from 18.5'-20			5 10 15 20			Bentonite seal from 4.5-22 ft bgs.				
0	SAND (SP); brown; dense; wet; transition sand at 23' bgs.	to fine grained									
0				25							
0	SAND (SP); black; dense; wet; gray clay of recovered macrocore at 30' bgs.	bserved in		- - - -			Pre-packed 20/40 silica sand screened interval 24-29 f bgs.				
				30							

Project I Site Ala Client Ala Cli	aska Real Estate Parking Lot	Recovery De Device Diam Sample Met # of Samples Drilling Com Rig Type Ge Hammer Dro	evicec hod _D s _0 pany _ eoprobe	OT 45 1.5 -inch T 45 GeoTek A 8040	ılaska		
COLORTEC READING (ppm)	SOIL DESCRIPTION AND NOTES		SOIL GRAPHIC	DЕРТН (ft)	WATER LEVEL	WELL GRAPHIC	WELL DESCRIPTION
0 0 -	SANDY GRAVEL (GP); gray; dense; damp; s CLAY (CH); gray; stiff; moist; first colortec s at 16' was 3 ppm but the result was not re	screening sample					Bentonite seal from 2-6 ft bgs. Pre-packed 20/40 silica sand screened interval from 8.5-13.5 ft bgs.
0	End of Boring: 20 feet bgs.			20			

	soil Boring Well Constr	UCTIO					Boring Number: 4GMW-14 Project Number: 20266.008		
	Name _ Alaska Real Estate								
	aska Real Estate Parking Lot					X/Y Datum NAD83(2011) ASP4 USft			
lient <u>/</u>									
	entist/Engineer Olga Stewart /8/2014						Elevation Datum NAVD88 ft Extra Field Notes:		
	r Sunny								
	epth _15 feet bgs		•						
	iize 4.5 -inch								
COLORTEC READING (ppm)	SOIL DESCRIPTION AND NOTES		SOIL GRAPHIC	DEPTH (ft)	WATER LEVEL	WELL GRAPHIC	WELL DESCRIPTION		
	Unable to remove sample sleeve from core strong fuel odor with noticeable black fuel			0 5			Flush mount monument encased in 6" of concrete Bentonite seal from 2-5.5 ft bgs.		
0 0.5 0	GRAVEL (GP); dark black; dense; moist; stre hydrocarbon staining; fuel product noted t recovered sample blebs of NAPL noted in recovered sample.	ong fuel odor;		10			Pre-packed 20/40 silica sand screened interval from 8.5-13.5 ft bgs.		
U	CLAY (CH); gray; stiff; moist.			 15					

Project I Site Ala Client Ala Field Sci Date 5 Weathe Total De	entist/Engineer Olga Stewart	RUCTION Recovery Dev Device Diame Sample Meth # of Samples Drilling Comp Rig Type Geo Hammer Dro	eter 4 od D oany _ oprobe	OT 45 5 -inch T 45 GeoTek A 8040 eight _N	laska I/A		X/Y Datum NAD83(2011) ASP4 USft Ground Elevation 37.06 Elevation Datum NAVD88 ft Extra Field Notes:
COLORTEC READING (ppm)	SOIL DESCRIPTION AND NOTES		SOIL GRAPHIC	DEPTH (ft)	WATER LEVEL	WELL GRAPHIC	WELL DESCRIPTION
0 0 1	No soil recovered. GRAVEL WITH SAND (GP); gray; dense; modor; hydrocarbon staining. CLAY (CH); gray; stiff; moist; no odor.			5			Flush mount monument encased in 6" of concrete Bentonite seal from 0.8-2 ft bgs. Pre-packed 20/40 silica sand screened interval from 4.5-9.5 ft bgs.
	End of Boring: 15 feet bgs.						

APPENDIX C

PHOTOGRAPH LOG

Photograph 1: Drilling monitoring well 4GMW-15 at the Ship Creek RV Lot using a GeoProbe 8040 direct push drilling rig. Looking east.

Photograph 2: Soils encountered during installation of well 4GMW-15 – sandy gravel to sand, to Bootlegger clay. Collecting soil for ColorTec screening.

Photograph 3: Drilling monitoring well 4GMW-12 near Grubstake Auction lot using a GeoProbe 8040 direct push drilling rig. Looking southeast.

Photograph 4: Soils encountered during installation of well 4GMW-12. Well sorted medium-grained sands to Bootlegger clay.

Photograph 5: Drilling monitoring well 4GMW-13 near former PENCO well MW-1. Looking west.

Photograph 6: Soils encountered during installation of well 4GMW-13. Sandy gravel with petroleum impacts to Bootlegger clay.

Photograph 7: Drilling monitoring well 4GMW-14. Looking northwest.

Photograph 8: Soils encountered during installation of well 4GMW-14. Sandy gravel impacted with petroleum.

Photograph 9: Pool of water located behind former Alaska Native Hospital fencing located just south of monitoring well 4GMW-14. Looking south.

Photograph 10: Condition of MW-3 prior to decommissioning.

Photograph 11: Decommissioning MW-3. Looking west.

Photograph 12: Monitoring well MW-1 prior to decommissioning.

Photograph 13: Decommissioning MW-1. Looking southeast.

Photograph 14: MW-4 condition prior to decommissioning.

Photograph 15: Decommissioning MW-4. Looking southeast.

Photograph 16: MW-2 prior to decommissioning.

Photograph 17: Decommissioning MW-2. Looking west.

APPENDIX D

WASTE DISPOSAL DOCUMENTS

ALASKA DEPARTMENT OF ENVIRONMENTAL CONSERVATION DIVISION OF SPILL PREVENTION AND RESPONSE Contaminated Sites Program

Contaminated Soil Transport and Treatment Approval Form

DEC HAZARD ID#	NAME OF CO	NTAMINATED SI	TE					
4084	Alaska Real Esta	ate Parking Lot						
SPILL LOCATION								
Former dry cleaner at 717 E. Fo	urth Avenue, Anch	orage, AK 99501						
CONTAMINATED SOIL'S CU	JRRENT LOCA	FION	SOURCE O	THE CONTAMINATION				
In a fenced area at the site			-	nay be related to fuel spills?				
TYPE OF CONTAMINATION		ESTIMATED V	OLUME	DATE(S) STOCKPILE GENERATED				
Petroleum		20 gallons		May 7-8, 2014				
POST TREATMENT ANALYS	SIS REQUIRED	(such as GRO, DRC), RRO, BTEX <u>,</u>	and/or Chlorinated Solvents)				
None								
COMMENTS								
and analyzed for DRO, GRO, a below the most stringent ADEC Since results are petroleum and	nd VOCs showed cleanup level. The dinot related to dry	GRO at 150 mg/kg are cuttings were placed cleaning, the source	and DRO at 6,1 ed in a 55-gallo	site. One soil sample collected from the drum 00 mg/kg. Only 5 VOCs were detected; all were n drum after drilling pending results for disposal. ion is unknown.				
Facility Accepting the Con	itaminated Soi	<u> </u>						
NAME OF THE FACILITY		ADDRESS/PHONE	NUMBER					
Emerald Alaska, Inc.	Emerald Alaska, Inc. 800 E. Ship Creek Ave, Anchorage, AK 99501 / 907-646-5020							
Responsible Party and Contractor Information								
			NIMBER					
BUSINESS/NAME	A	DDRESS/PHONE		99501 / 907-269-8685				
	A	DDRESS/PHONE		99501 / 907-269-8685				
BUSINESS/NAME	A	DDRESS/PHONE		99501 / 907-269-8685				
BUSINESS/NAME ADEC / Grant Lidren	A	DDRESS/PHONE	Anchorage, AK	99501 / 907-269-8685 anager / Ahtna Engineering Services, LLC				
BUSINESS/NAME	5	DDRESS/PHONE	Anchorage, AK	nager / Ahtna Engineering Services, LLC				
BUSINESS/NAME ADEC / Grant Lidren Olga Stewart	5	DDRESS/PHONE	Anchorage, AK Project Ma	nager / Ahtna Engineering Services, LLC				
BUSINESS/NAME ADEC / Grant Lidren Olga Stewart	5	DDRESS/PHONE	Anchorage, AK Project Ma	anager / Ahtna Engineering Services, LLC ation				
BUSINESS/NAME ADEC / Grant Lidren Olga Stewart	5	DDRESS/PHONE	Anchorage, AK Project Ma Title/Associa	anager / Ahtna Engineering Services, LLC				
BUSINESS/NAME ADEC / Grant Lidren Olga Stewart Name of the Person Requesting A Hand Hand Signature	pproval (printed)	DDRESS/PHONE 55 Cordova Street,	Project Ma Title/Associa 5/21/14 Date	anager / Ahtna Engineering Services, LLC ation 907-865-3865 Phone Number				
BUSINESS/NAME ADEC / Grant Lidren Olga Stewart Name of the Person Requesting A Signature Based on the information provaccordance with the approved DEC Project Manager a copy	pproval (printed) vided, ADEC aple facility operation of weight receip	DDRESS/PHONE 55 Cordova Street,DEC USE O proves transport ons plan. The Reports of the loads tr	Project Ma Title/Associa 5/21/14 Date NLY of the above sponsible Paransported to	anager / Ahtna Engineering Services, LLC ation 907-865-3865 Phone Number				
BUSINESS/NAME ADEC / Grant Lidren Olga Stewart Name of the Person Requesting A Signature Based on the information provaccordance with the approved DEC Project Manager a copy	pproval (printed) vided, ADEC aple facility operation of weight receipt shall be transported.	DDRESS/PHONE 55 Cordova Street,DEC USE O proves transport ons plan. The Reports of the loads tr	Project Ma Title/Associa 5/21/14 Date NLY of the above sponsible Paransported to	anager / Ahtna Engineering Services, LLC ation 907-865-3865 Phone Number mentioned material for treatment in ty or their consultant must submit to the the facility and a post treatment analytical pliance with 18 AAC 60.015. ADEC S				
BUSINESS/NAME ADEC / Grant Lidren Olga Stewart Name of the Person Requesting A Signature Based on the information pro- accordance with the approved DEC Project Manager a copy report. The contaminated soi	pproval (printed) vided, ADEC aple facility operation of weight receipt shall be transported.	DDRESS/PHONE 55 Cordova Street,DEC USE O proves transport ons plan. The Reports of the loads tr	Project Ma Title/Associa 5/21/14 Date NLY of the above sponsible Paransported to alload in com	anager / Ahtna Engineering Services, LLC ation 907-865-3865 Phone Number mentioned material for treatment in ty or their consultant must submit to the the facility and a post treatment analytical pliance with 18 AAC 60.015. ADEC S				

*** IN CASE OF EMERGENCY CALL 1-800-424-9300 Contract# 7619 *FLECEIVED

C. C.L. I 000 IL. 3300	Collet acell 1020	00 000 1700
NON-HAZARDOUS	WASTE MANIFEST	1 3 2014

Pleas	e print or type (Form designed for use on elite (12 pitch) typewriter)		JUN 1 0	LULI	
,	NON-HAZARDOUS WASTE MANIFEST 1. Generator's US EPA ID No. A K R O O O 2 O 1 5 7 4 Site Address	17	Manifest [NR.	ATIONS 3 1 A	2. Page 1 of 1
	3. Gelegoe Name and Mailing Address ADEC			OLGA STE	WART
	110 W. 38TH AVE, SUITE 200A 4TH AVE & GAMBEI		DPERTY		
	ANCHORAGE, AK 99503 ANCHORAGE, AK 99 4. Generator's Phone ((907) 297-8039	320T			1111
	5. Transporter 1 Company Name 6. US EPA ID Number		A. State Trans	porter's ID	
	EMERALD ALASKA, INC A K R O O O O O 4 1	8 4	B. Transporter	70075	258-1558
	7. Transporter 2 Company Name 8. US EPA ID Number		C. State Trans		
			D. Transporter	2 Phone	
	Designated Facility Name and Site Address 10. US EPA ID Number	17 17	E. State Facilit	y's ID	
	EMERALD ALASKA, INC. 2020 VIKING DRIVE				
	ANCHORAGE, AK 99501 A K R O O O O 4 1	8 4	F. Facility's Ph	one (907) 2	58-1558
	11. WASTE DESCRIPTION	No.	ntainers Type	13. Total Quantity	14. Unit Wt./Vol.
	a MATERIAL NOT REGULATED BY D.O.T.	110.	Турс	Gourney	111,701.
	PATERIAL NOT RECOGNIES BY S.O.T.	1	DM	200	Р
G	b.				
E					
N				Production in the	
E R	C.				
A		1 4			
O R	d.	/			
R	u.				
	G. Additional Descriptions for Materials Listed Above		H. Handling Co	des for Wastes Listed Above	
	1)EA0708 ADEC REPORTABLE POL SOIL				
					A STATE OF
	15. Special blandling Instructions and Additional Information his is to contify that the above)/a-na	mod mate	rials are pro	nerly
	15.Seghi চিন্তুলি বিশ্বিত্য প্রতিষ্ঠিত কর্মান কর্মান কর্মান করিছে বিশ্বত্য কর্মান ক্রামান কর্মান কর্মান কর্মান কর্মান কর্মান কর্মান কর্মান কর্মান ক্রামান ক্রামান ক্রামান ক্রামান ক্রামান ক্রামান ক্রামান ক্রামান ক	d are	in prope	er condition for ment of	or
	16. GENERATOR'S CERTIFICATION: I hereby certify that the contents of this shipment are fully and accurately described	and are in	all respects		
	in proper condition for transport. The materials described on this manifest are not subject to lederal hazardous waste re	gulations.			
					Date
	Printed/Typed Name Signature Signature	-		Mon	th Day Year
	Grant Lioten Scrank	ye-			122114
TRAZOPORTER	17. Transporter 1 Acknowledgement of Receipt of Materials				Date
Ñ	Printed/Typed Name Signature			Mon	th Day Year
P	18. Transporter Acknowledgement of Receipt of Materials				Date
Ř	Printed/Typed Name Signature			Mon	
Ř					
F	19. Discrepancy Indication Space				
AC					
!	20. Facility Owner or Operator: Certification of receipt of the waste materials covered by this manifest, except as noted in ite	em 19.			
1		-			Date
Y	Printe Vype Name Signature Signature Signature	25	Bras	O - Mon	th Day Yea
Ŀ	Jarkena - Blastly James	J 4	+ Xay	Ley V	

CERTIFICATE OF DISPOSAL/RECYCLE

JUN 1 3 2014
IN OPERATIONS

GENERATOR: ADEC

4TH AVE & GAMBELL PROPERTY ANCHORAGE AK 99501

DISPOSAL FACILITY: EMERALD ALASKA, INC.

2020 VIKING DRIVE

ANCHORAGE AK 99501

EPA ID NUMBER: AKR000201574

MANIFEST/DOCUMENT #: 22031A

DATE OF DISPOSAL/RECYCLE: 05/22/2014

LINE WASTE DESCRIPTION CONTAINERS TYPE QUANTITY UOM

1 ADEC REPORTABLE POL SOIL 1 DM 200 P

I certify, on behalf of the above listed treatment facility, that to the best of my knowledge, the above described waste was managed in compliance with all applicable laws, regulations, permits, and licenses on the date listed above.

PREPARED BY: PATRICIA BEASLEY

SIGNATURE: Cattlery O Hasley DATE: 5/23/2014

14061703673

Ple	ase pi	rint or type. (Form design	ned for use on elite (12-pitch) type		0000000		Contr	ac+# 761	o Forr	n Approved.	OMB No	. 2050-0039
†	UNI	FORM HAZARDOUS	1. Generator ID Number		2. Page 1 of 3. Eme	ergency Response	Phone	4. Manifest	Tracking N	umber	0 [-1
П		VASTE MANIFEST enerator's Name and Mailing	AKR000201574			0-424-9				1998	9 1	FLE
Н	5. 6	-					(it different)	than mailing addres	ssj			
Н		ADE	_	TE 2004	ADEC		AMDEL	ו החסמרה	T 3/			
П		erator's Phone:	W. 38TH AVE SUI	LIE ZUUA	IANCH	ORAGE,	AMDEL AK 99	L PROPER 501	IT			
П	6. Tr	erator's Phone: ansporter 1 Company Name	7) 297-8039					U.S. EPA ID I	Number			
Ш		EMERALD ALAS	KA TNC							AKRO0	00041	184
П	7. Tr	ansporter 2 Company Name	IKA 9 LIKE					U.S. EPA ID N	Number	-CUSISSEA	2277	
П		WEAVER BROTH								AKD00	28483	372
П	8. De	esignated Facility Name and						U.S. EPA ID N	Number			
	Facil	2040 GRAI	ECOLOGY IDAHO, IN DO LEMLEY RD ND VIEW, ID 83624					î		IDD07	31146	554
П		1 LOUI	0) 274-1516 n (including Proper Shipping Name, Har	rard Class ID Number		10, Contain	nore	44 7-4-1	10.11.4			
	9a. HM	and Packing Group (if an		ard Olass, ID Number,		No.	Туре	11. Total Quantity	12. Unit Wt./Vol.	13. \	Naste Cod	es
1		1.					-/-					1
TO	х	RQ, UN3082,	WASTE ENVIRONMEN LIQUID, N.O.S. (TALLY HAZA	RDOUS	7	D14	0-0	Р	F002		-
ER	^	PGIII. RO	=F002, ERG#171	TETRACHLOR	DETHENE),	2	DM	000	P			<u> </u>
GENERATOR		2		+=11v b===	mala con			7.W 1281 == 1		F002		
ĭ	Х	substances.	Waste environmen solid,n.o.s. (PE	RCHLOROETH	YLENE).	1	DM	100	Р	-FUUZ		
	-	PGIII, RO	=100, ERG#171						_			
		=										
ľ		4.										
												—
1	14 S	pecial Handling Instructions	and Additional Information					ļ				
	15.	GENERATOR'S/OFFEROR marked and labeled/placarde Exporter, I certify that the co. I certify that the waste minim	2 PURGE WATER 550 NTAMINATED WOOD/0 'S CERTIFICATION: I hereby declare ed, and are in all respects in proper contents of this consignment conform to the ization statement identified in 40 CFR	that the contents of this idition for transport according to the terms of the attached	ording to applicable inter d EPA Acknowledgment e quantity generator) or	mational and nation of Consent. (b) (if I am a sma	onal governr Il quantity ge	mental regulations.			m the Prin	nary
	Gene	rator's/Offeror's Printed/Type	Lidten		Signature	- X -	S.M			15	th Day	114
7	16. In	ternational Shipments				2000	July				00	411
I L	Trans	sporter signature (for exports	Import to U.S.		Export from U.S.	Port of ent Date leaving						
Personal Property lies	17, Tr	ansporter Acknowledgment o	of Receipt of Materials			2000.10010	1					
TR ANSPORTER	Trans	porter 1 Printed/Typed Name	1 1.1.		Signature	41				Mont	h Day	Year
SP	Troops	poster 2 Printed/Typed Mame	kumke		Townships &		-			Mon	ole Day	717
RAI	II dita	poster 2 Prinjed/Typed Mame	PUIC		Signature	11-7	/	11.		1 /	12	1711
F	18. Di	isoletinov	WITT		100	47 V	mi	M		1.5	1	7//
	-	Discrepancy Indication Space	е Паш	Π-	T	1				T	7- ""	
			Quantity	Ш Туре	L	Residue		Partial Reje	NUIDI	L	Full Rej	CCION
1		Language P	5.00 Z.T. S	Line Control	Ma	nifest Reference	Number:	7.50		- 6		
Ē	18b. A	Alternate Facility (or Generate	or)	41 1080				U.S. EPA ID N	umber			
ACI								I				
0		y's Phone: Signature of Alternate Facility	(or Generator)							Mon	ith Da	y Year
A			and the second development of							1	1	
DESIGNATED FACILITY	19. Ha	azardous Waste Report Man	agement Method Codes (i.e., codes for	hazardous waste treatr	ment, disposal, and recy	cling systems)		(a ₁) (1)				-1
H)	1.	11127	2 11 .2		3.			4.				
11		11177	1 11/2	2								
			Operator: Certification of receipt of haza	rdous materials covered		t as noted in Item	18a				L P	
	Linte	d/Typed Name	1100		Signature		/_	200		Mon	th Day	Year
₽A	Form	8700-22 (Rev 3-05) Pro	evious editions are obsolete.			nny		ACILITY TO D	EQTIMA	TION STAT	E /IE DE	OUIDED
	2,111	Lucia dal 100	The same is an a productor		. / 1	DESIG	икупдЫ Г	AVILLE TO D	PAULOT	HOR GIME	se file ize	WOUNED)

1	_	FORM HAZARDOUS WASTE MANIFEST (Continuation Sheet) 21. Generator ID Number A K R 0 0 0 2 0 1 5 7 4	22. Page 2 / 3	23. Manif	est Tracking Nu 8 9 9 9	89F	LE	0. 2050-0038
	24. 0	Generator's Name ADEC 4TH AVE & GAMBELL PROPE (907) 297-8039 ANCHORAGE, AK 99501	ERTY					
	25.	Transporter Company Name TOTEM OCEAN TRAILER EXPRESS			U.S. EPA ID	Number	WAD07039	7955
	26.	Transporter 4 Company Name EMERALD SERVICES, INC.			U.S. EPA ID	Number	WAD05836	4647
	27a. HM	27b. U.S. DOT Description (including Proper Shipping Name, Hazard Class, ID Number, and Packing Group (if any))	28. Contain No.	ers Type	29. Total Quantity	30. Unit Wt./Vol.	31. Waste Co	des
								-
		×						
GENERATOR								
- GENE								
	32. Sp	pecial Handling Instructions and Additional Information						
ļ								
TRANSPORTER	33. Tra	ansporter 3 Acknowledgment of Receipt of Materials d/Typed Name Michael Thrash					Month Da	y Year
LRANS	34. Tra	Acknowledgment of Receipt of Materials Acknowledgment of Receipt of Materials Signature Company Signature	in				Month Da	y Year
CILITY	35. Dis	screpancy (13/2 11/1	
DESIGNATED FACILITY	36. Ha	zardous Waste Report Management Method Codes (i.e., codes for hazardous waste treatment, disposal, and re	ecycling systems)					
DESIGN								
	Form 8	8700-22A (Rev. 3-05) Previous editions are obsolete.	DESIG	NATED FA	CILITY TO D	ESTINAT	TON STATE (IF R	EQUIRED)

	print or type. (Form designed for use on elite (12-pitch) typewriter.) NIFORM HAZARDOUS WASTE MANIFEST (Continuation Sheet) 21. Generator ID Number A K R 0 0 0 2 0 1 5 7 4	22. Page 3 / 3	23. Manifest Tracking 0 0 4 8 9 9	Number	n Approved. OMB No. 2050-0
24.	ADEC 4TH AVE & GAMBELL PROPE (907) 297-8039 ANCHORAGE, AK 99501	RTY			
25.	Transporter 5 Company Name STEVE FORLER TRUCKING		Ĭ ·	ID Number	IDR000205625
26.	. Transporter 6 Company Name		U.S. EPA	ID Number	
27a HM		28. Contain No.	ers 29. Tota Type Quantity		31. Waste Codes
-	*				
-	1				
_					
H					
H					
	*				
_					
_					
32.	Special Handling Instructions and Additional Information				
Print	Transporter 5 Acknowledgment of Receipt of Materials tent/Typed Name Signature Signature	h 81	6		Month Day Yes
Print	Transporter 6 Acknowledgment of Receipt of Materials tted/Typed Name Signature				Month Day Yea
35. [Discrepancy				
			k.		
36. H	Hazardous Waste Report Management Method Codes (i.e., codes for hazardous waste treatment, disposal, and rec	cycling systems)		1 -	
36. F		i			
	n 8700-22A (Rev. 3-05) Previous editions are obsolete.	DESIG	NATED FACILITY TO	DESTINAT	TION STATE (IF REQUIRE

APPENDIX E

LABORATORY DATA AND DATA REVIEW

- E-1 LABORATORY REPORTS
 - ON-SITE ENVIRONMENTAL
 - SIREM
 - PACE ANALYTICAL (FORMERLY MICROSEEPS)
 - TESTAMERICA
- E-2 DATA REVIEW CHECKLISTS

14648 NE 95th Street, Redmond, WA 98052 • (425) 883-3881

June 2, 2014

Olga Stewart Ahtna Engineering Services LLC 305 34th Avenue Fairbanks, AK 99701

Re: Analytical Data for Project 20266.008.01.02

Laboratory Reference No. 1405-144

Dear Olga:

Enclosed are the analytical results and associated quality control data for samples submitted on May 17, 2014.

CS Laboratory Approval Number: UST-039

The standard policy of OnSite Environmental, Inc. is to store your samples for 30 days from the date of receipt. If you require longer storage, please contact the laboratory.

We appreciate the opportunity to be of service to you on this project. If you have any questions concerning the data, or need additional information, please feel free to call me.

Sincerely,

David Baumeister Project Manager

Enclosures

Case Narrative

Samples were collected on May 13, 14, and 15, 2014 and received by the laboratory on May 17, 2014. They were maintained at the laboratory at a temperature of 2°C to 6°C.

General QA/QC issues associated with the analytical data enclosed in this laboratory report will be indicated with a reference to a comment or explanation on the Data Qualifier page. More complex and involved QA/QC issues will be discussed in detail below.

Dissolved Iron by EPA 6010C Analysis

The dissolved field filter samples were received containing solid material. The samples were digested according to OnSite Environmental standard operating procedure.

Any other QA/QC issues associated with this extraction and analysis will be indicated with a footnote reference and discussed in detail on the Data Qualifier page.

Analyst's Signature

Brandy Howard, TOC Chemist

5-79-14 Date

Analyst's Signature

William Kelsch, Inorganics Supervisor

5-29-14 Date

Analyst's Signature

Stacey Duran, GC/MS Volatiles Chemist

5-29-19 Date

TOTAL ORGANIC CARBON SM 5310B

				Date	Date	
Analyte	Result	PQL	Method	Prepared	Analyzed	Flags
Client ID:	14-AREPL-MW10-GW					
Laboratory ID:	05-144-01					
Total Organic Carbon	1.8	1.0	SM 5310B	5-21-14	5-21-14	
Client ID:	14-AREPL-MW5-GW					
Laboratory ID:	05-144-03					
Total Organic Carbon	1.7	1.0	SM 5310B	5-21-14	5-21-14	
Client ID: Laboratory ID:	14-AREPL-MW6-GW 05-144-04					
Total Organic Carbon	1.6	1.0	SM 5310B	5-21-14	5-21-14	
Client ID: Laboratory ID:	14-AREPL-MW28-GW 05-144-05					
Total Organic Carbon	3.1	1.0	SM 5310B	5-21-14	5-21-14	
Client ID:	14-AREPL-4GMW-15-GW					
Laboratory ID:	05-144-13					
Total Organic Carbon	3.1	1.0	SM 5310B	5-21-14	5-21-14	

> TOTAL ORGANIC CARBON SM 5310B QUALITY CONTROL

				Date	Date	
Analyte	Result	PQL	Method	Prepared	Analyzed	Flags
METHOD BLANK						
Laboratory ID:	MB0521W1					
Total Organic Carbon	ND	1.0	SM 5310B	5-21-14	5-21-14	

				Source	Percent	Recovery		RPD	
Analyte	Res	sult	Spike Level	Result	Recovery	Limits	RPD	Limit	Flags
DUPLICATE									
Laboratory ID:	05-13	38-01							
	ORIG	DUP							
Total Organic Carbon	ND	ND	NA	NA	NA	NA	NA	15	
MATRIX SPIKE									
Laboratory ID:	05-13	38-01							
	M	IS	MS		MS				
Total Organic Carbon	10).5	10.0	ND	105	70-124	NA	NA	
SPIKE BLANK									
Laboratory ID:	SB05	21W1							
	S	В	SB		SB				
Total Organic Carbon	10).4	10.0	NA	104	91-119	NA	NA	

NITRATE + NITRITE (as Nitrogen) EPA 353.2

				Date	Date	
Analyte	Result	PQL	Method	Prepared	Analyzed	Flags
Client ID:	14-AREPL-MW10-GW					
Laboratory ID:	05-144-01					
Nitrate+Nitrite	4.7	0.050	EPA 353.2	5-27-14	5-27-14	
Client ID:	14-AREPL-MW5-GW					
Laboratory ID:	05-144-03					
Nitrate+Nitrite	5.5	0.10	EPA 353.2	5-27-14	5-27-14	
Client ID:	14-AREPL-MW6-GW					
Laboratory ID:	05-144-04					
Nitrate+Nitrite	4.9	0.10	EPA 353.2	5-27-14	5-27-14	
Client ID:	14-AREPL-MW28-GW					
Laboratory ID:	05-144-05					
Nitrate+Nitrite	0.16	0.050	EPA 353.2	5-27-14	5-27-14	
Client ID:	14-AREPL-4GMW-15-GW					
Laboratory ID:	05-144-13					
Nitrate+Nitrite	ND	0.050	EPA 353.2	5-27-14	5-27-14	

NITRATE + NITRITE (as Nitrogen) EPA 353.2 QUALITY CONTROL

				Date	Date	
Analyte	Result	PQL	Method	Prepared	Analyzed	Flags
METHOD BLANK						
Laboratory ID:	MB0527W1					
Nitrate+Nitrite	ND	0.050	EPA 353.2	5-27-14	5-27-14	

				Source	Percent	Recovery		RPD	
Analyte	Re	sult	Spike Level	Result	Recovery	Limits	RPD	Limit	Flags
DUPLICATE									
Laboratory ID:	05-1	44-05							
	ORIG	DUP							
Nitrate+Nitrite	0.155	0.156	NA	NA	NA	NA	1	16	
MATRIX SPIKE									
Laboratory ID:	05-1	44-05							
	M	1S	MS		MS				
Nitrate+Nitrite	2.	36	2.00	0.155	110	84-119	NA	NA	
SPIKE BLANK									
Laboratory ID:	SB05	27W1							
	S	B	SB	•	SB				
Nitrate+Nitrite	2.	20	2.00	NA	110	86-114	NA	NA	

SULFATE ASTM D516-07

				Date	Date	
Analyte	Result	PQL	Method	Prepared	Analyzed	Flags
Client ID:	14-AREPL-MW10-GW					
Laboratory ID:	05-144-01					
Sulfate	29	25	ASTM D516-07	5-27-14	5-27-14	
Client ID:	14-AREPL-MW5-GW					
Laboratory ID:	05-144-03					
Sulfate	40	25	ASTM D516-07	5-27-14	5-27-14	
Client ID:	14-AREPL-MW6-GW					
Laboratory ID:	05-144-04					
Sulfate	42	25	ASTM D516-07	5-27-14	5-27-14	
Client ID:	14-AREPL-MW28-GW					
Laboratory ID:	05-144-05					
Sulfate	46	10	ASTM D516-07	5-27-14	5-27-14	
Client ID:	14-AREPL-4GMW-15-GW					
Laboratory ID:	05-144-13					
Sulfate	ND	5.0	ASTM D516-07	5-27-14	5-27-14	

SULFATE ASTM D516-07 QUALITY CONTROL

Analyte				Date	Date	Flags
	Result	PQL	Method	Prepared	Analyzed	
METHOD BLANK						_
Laboratory ID:	MB0527W1					
Sulfate	ND	5.0	ASTM D516-07	5-27-14	5-27-14	

				Source	Percent	Recovery		RPD	
Analyte	Res	sult	Spike Level	Result	Recovery	Limits	RPD	Limit	Flags
DUPLICATE									
Laboratory ID:	05-14	44-04							
	ORIG	DUP							
Sulfate	41.9	41.1	NA	NA	NA	NA	2	10	
MATRIX SPIKE									
Laboratory ID:	05-14	44-04							
	M	1S	MS		MS				
Sulfate	95	5.8	50.0	41.9	108	82-123	NA	NA	
SPIKE BLANK									
Laboratory ID:	SB05	27W1							
	S	B	SB		SB				
Sulfate	9.	58	10.0	NA	96	91-114	NA	NA	

TOTAL IRON EPA 6010C

Matrix: Water Units: ug/L (ppb)

				Date	Date	
Analyte	Result	PQL	EPA Method	Prepared	Analyzed	Flags
Lab ID:	05 444 04					
Lab ID: Client ID:	05-144-01 14-AREPL-MW10-GW					
Client ID:						
Iron	11000	56	6010C	5-27-14	5-27-14	
Lab ID:	05-144-03					
Client ID:	14-AREPL-MW5-GW					
Iron	8700	56	6010C	5-27-14	5-27-14	
Lab ID:	05-144-04					
Client ID:	14-AREPL-MW6-GW					
Iron	1100	56	6010C	5-27-14	5-27-14	
Lab ID:	05-144-05					
Client ID:	14-AREPL-MW28-GW					
Iron	170	56	6010C	5-27-14	5-27-14	
Lab ID:	05-144-13					
Client ID:	14-AREPL-4GMW-15-GW					
Iron	16000	56	6010C	5-27-14	5-27-14	

TOTAL IRON EPA 6010C METHOD BLANK QUALITY CONTROL

Date Extracted: 5-27-14

Date Analyzed: 5-27-14

Matrix: Water Units: ug/L (ppb)

Lab ID: MB0527WM1

Analyte Method Result PQL

Iron 6010C **ND** 56

TOTAL IRON EPA 6010C DUPLICATE QUALITY CONTROL

Date Extracted: 5-27-14
Date Analyzed: 5-27-14

Matrix: Water Units: ug/L (ppb)

Lab ID: 05-144-04

Sample Duplicate
Analyte Result Result RPD PQL Flags

Iron 1120 930 19 56

TOTAL IRON EPA 6010C MS/MSD QUALITY CONTROL

Date Extracted: 5-27-14
Date Analyzed: 5-27-14

Matrix: Water Units: ug/L (ppb)

Lab ID: 05-144-04

	Spike		Percent		Percent		
Analyte	Level	MS	Recovery	MSD	Recovery	RPD	Flags
Iron	22200	23100	99	23500	101	1	

HALOGENATED VOLATILES EPA 8260C

				Date	Date	
Analyte	Result	PQL	Method	Prepared	Analyzed	Flags
Client ID:	14-AREPL-MW10-GW	1				
Laboratory ID:	05-144-01					
Vinyl Chloride	ND	0.20	EPA 8260C	5-22-14	5-22-14	
1,1-Dichloroethene	ND	0.20	EPA 8260C	5-22-14	5-22-14	
(trans) 1,2-Dichloroethene	e ND	0.20	EPA 8260C	5-22-14	5-22-14	
(cis) 1,2-Dichloroethene	ND	0.20	EPA 8260C	5-22-14	5-22-14	
Trichloroethene	ND	0.20	EPA 8260C	5-22-14	5-22-14	
Tetrachloroethene	ND	0.20	EPA 8260C	5-22-14	5-22-14	
Surrogate:	Percent Recovery	Control Limits				
Dibromofluoromethane	112	62-122				
Toluene-d8	100	70-120				
4-Bromofluorobenzene	99	71-120				

HALOGENATED VOLATILES EPA 8260C

				Date	Date	
Analyte	Result	PQL	Method	Prepared	Analyzed	Flags
Client ID:	14-AREPL-MW7-GW					
Laboratory ID:	05-144-02					
Vinyl Chloride	ND	0.20	EPA 8260C	5-22-14	5-22-14	
1,1-Dichloroethene	ND	0.20	EPA 8260C	5-22-14	5-22-14	
(trans) 1,2-Dichloroethene	ND	0.20	EPA 8260C	5-22-14	5-22-14	
(cis) 1,2-Dichloroethene	ND	0.20	EPA 8260C	5-22-14	5-22-14	
Trichloroethene	ND	0.20	EPA 8260C	5-22-14	5-22-14	
Tetrachloroethene	18	0.20	EPA 8260C	5-22-14	5-22-14	
Surrogate:	Percent Recovery	Control Limits				
Dibromofluoromethane	115	62-122				
Toluene-d8	98	70-120				
4-Bromofluorobenzene	99	71-120				

HALOGENATED VOLATILES EPA 8260C

				Date	Date	
Analyte	Result	PQL	Method	Prepared	Analyzed	Flags
Client ID:	14-AREPL-MW5-GW					
Laboratory ID:	05-144-03					
Vinyl Chloride	ND	10	EPA 8260C	5-22-14	5-22-14	
1,1-Dichloroethene	ND	10	EPA 8260C	5-22-14	5-22-14	
(trans) 1,2-Dichloroethene	ND	10	EPA 8260C	5-22-14	5-22-14	
(cis) 1,2-Dichloroethene	ND	10	EPA 8260C	5-22-14	5-22-14	
Trichloroethene	ND	10	EPA 8260C	5-22-14	5-22-14	
Tetrachloroethene	1100	10	EPA 8260C	5-22-14	5-22-14	
Surrogate:	Percent Recovery	Control Limits				
Dibromofluoromethane	109	62-122				
Toluene-d8	94	70-120				
4-Bromofluorobenzene	99	71-120				

HALOGENATED VOLATILES EPA 8260C

				Date	Date	
Analyte	Result	PQL	Method	Prepared	Analyzed	Flags
Client ID:	14-AREPL-MW6-GW					
Laboratory ID:	05-144-04					
Vinyl Chloride	ND	10	EPA 8260C	5-22-14	5-22-14	
1,1-Dichloroethene	ND	10	EPA 8260C	5-22-14	5-22-14	
(trans) 1,2-Dichloroethene	ND	10	EPA 8260C	5-22-14	5-22-14	
(cis) 1,2-Dichloroethene	ND	10	EPA 8260C	5-22-14	5-22-14	
Trichloroethene	ND	10	EPA 8260C	5-22-14	5-22-14	
Tetrachloroethene	1600	10	EPA 8260C	5-22-14	5-22-14	
Surrogate:	Percent Recovery	Control Limits				
Dibromofluoromethane	107	62-122				
Toluene-d8	93	70-120				
4-Bromofluorobenzene	97	71-120				

HALOGENATED VOLATILES EPA 8260C

				Date	Date	
Analyte	Result	PQL	Method	Prepared	Analyzed	Flags
Client ID:	14-AREPL-MW28-GW	1				
Laboratory ID:	05-144-05					
Vinyl Chloride	41	2.0	EPA 8260C	5-22-14	5-22-14	
1,1-Dichloroethene	ND	2.0	EPA 8260C	5-22-14	5-22-14	
(trans) 1,2-Dichloroethene	4.5	2.0	EPA 8260C	5-22-14	5-22-14	
(cis) 1,2-Dichloroethene	310	2.0	EPA 8260C	5-22-14	5-22-14	
Trichloroethene	31	2.0	EPA 8260C	5-22-14	5-22-14	
Tetrachloroethene	150	2.0	EPA 8260C	5-22-14	5-22-14	
Surrogate:	Percent Recovery	Control Limits				
Dibromofluoromethane	111	62-122				
Toluene-d8	95	70-120				
4-Bromofluorobenzene	101	71-120				

HALOGENATED VOLATILES EPA 8260C

				Date	Date	
Analyte	Result	PQL	Method	Prepared	Analyzed	Flags
Client ID:	14-AREPL-MW12S-GV	V				
Laboratory ID:	05-144-06					
Vinyl Chloride	ND	0.20	EPA 8260C	5-22-14	5-22-14	
1,1-Dichloroethene	ND	0.20	EPA 8260C	5-22-14	5-22-14	
(trans) 1,2-Dichloroethene	e ND	0.20	EPA 8260C	5-22-14	5-22-14	
(cis) 1,2-Dichloroethene	0.25	0.20	EPA 8260C	5-22-14	5-22-14	
Trichloroethene	ND	0.20	EPA 8260C	5-22-14	5-22-14	
Tetrachloroethene	ND	0.20	EPA 8260C	5-22-14	5-22-14	
Surrogate:	Percent Recovery	Control Limits				
Dibromofluoromethane	115	62-122				
Toluene-d8	100	70-120				
4-Bromofluorobenzene	101	71-120				

HALOGENATED VOLATILES EPA 8260C

				Date	Date	
Analyte	Result	PQL	Method	Prepared	Analyzed	Flags
Client ID:	14-AREPL-MW13-GW					
Laboratory ID:	05-144-07					
Vinyl Chloride	ND	0.20	EPA 8260C	5-22-14	5-22-14	
1,1-Dichloroethene	ND	0.20	EPA 8260C	5-22-14	5-22-14	
(trans) 1,2-Dichloroethene	e ND	0.20	EPA 8260C	5-22-14	5-22-14	
(cis) 1,2-Dichloroethene	0.26	0.20	EPA 8260C	5-22-14	5-22-14	
Trichloroethene	ND	0.20	EPA 8260C	5-22-14	5-22-14	
Tetrachloroethene	ND	0.20	EPA 8260C	5-22-14	5-22-14	
Surrogate:	Percent Recovery	Control Limits				
Dibromofluoromethane	119	62-122				
Toluene-d8	100	70-120				
4-Bromofluorobenzene	105	71-120				

HALOGENATED VOLATILES EPA 8260C

				Date	Date	
Analyte	Result	PQL	Method	Prepared	Analyzed	Flags
Client ID:	14-AREPL-DPB24-GW	I				
Laboratory ID:	05-144-08					
Vinyl Chloride	ND	0.20	EPA 8260C	5-22-14	5-22-14	
1,1-Dichloroethene	ND	0.20	EPA 8260C	5-22-14	5-22-14	
(trans) 1,2-Dichloroethene	e ND	0.20	EPA 8260C	5-22-14	5-22-14	
(cis) 1,2-Dichloroethene	ND	0.20	EPA 8260C	5-22-14	5-22-14	
Trichloroethene	ND	0.20	EPA 8260C	5-22-14	5-22-14	
Tetrachloroethene	ND	0.20	EPA 8260C	5-22-14	5-22-14	
Surrogate:	Percent Recovery	Control Limits				
Dibromofluoromethane	118	62-122				
Toluene-d8	101	70-120				
4-Bromofluorobenzene	103	71-120				

HALOGENATED VOLATILES EPA 8260C

				Date	Date	
Analyte	Result	PQL	Method	Prepared	Analyzed	Flags
Client ID:	14-AREPL-MW8-GW					
Laboratory ID:	05-144-09					
Vinyl Chloride	ND	0.20	EPA 8260C	5-22-14	5-22-14	
1,1-Dichloroethene	ND	0.20	EPA 8260C	5-22-14	5-22-14	
(trans) 1,2-Dichloroethene	ND	0.20	EPA 8260C	5-22-14	5-22-14	
(cis) 1,2-Dichloroethene	ND	0.20	EPA 8260C	5-22-14	5-22-14	
Trichloroethene	ND	0.20	EPA 8260C	5-22-14	5-22-14	
Tetrachloroethene	0.81	0.20	EPA 8260C	5-22-14	5-22-14	
Surrogate:	Percent Recovery	Control Limits				
Dibromofluoromethane	116	62-122				
Toluene-d8	101	70-120				
4-Bromofluorobenzene	103	71-120				

HALOGENATED VOLATILES EPA 8260C

				Date	Date	
Analyte	Result	PQL	Method	Prepared	Analyzed	Flags
Client ID: 1	4-AREPL-4GMW-12-G	W				
Laboratory ID:	05-144-10					
Vinyl Chloride	ND	0.20	EPA 8260C	5-22-14	5-22-14	
1,1-Dichloroethene	ND	0.20	EPA 8260C	5-22-14	5-22-14	
(trans) 1,2-Dichloroethene	e ND	0.20	EPA 8260C	5-22-14	5-22-14	
(cis) 1,2-Dichloroethene	ND	0.20	EPA 8260C	5-22-14	5-22-14	
Trichloroethene	ND	0.20	EPA 8260C	5-22-14	5-22-14	
Tetrachloroethene	ND	0.20	EPA 8260C	5-22-14	5-22-14	
Surrogate:	Percent Recovery	Control Limits				
Dibromofluoromethane	120	62-122				
Toluene-d8	101	70-120				
4-Bromofluorobenzene	101	71-120				

HALOGENATED VOLATILES EPA 8260C

				Date	Date	
Analyte	Result	PQL	Method	Prepared	Analyzed	Flags
Client ID: 1	4-AREPL-4GMW-13-G	W				
Laboratory ID:	05-144-11					
Vinyl Chloride	ND	0.20	EPA 8260C	5-22-14	5-22-14	
1,1-Dichloroethene	ND	0.20	EPA 8260C	5-22-14	5-22-14	
(trans) 1,2-Dichloroethene	e ND	0.20	EPA 8260C	5-22-14	5-22-14	
(cis) 1,2-Dichloroethene	ND	0.20	EPA 8260C	5-22-14	5-22-14	
Trichloroethene	ND	0.20	EPA 8260C	5-22-14	5-22-14	
Tetrachloroethene	ND	0.20	EPA 8260C	5-22-14	5-22-14	
Surrogate:	Percent Recovery	Control Limits				
Dibromofluoromethane	117	62-122				
Toluene-d8	100	70-120				
4-Bromofluorobenzene	106	71-120				

HALOGENATED VOLATILES EPA 8260C

				Date	Date	
Analyte	Result	PQL	Method	Prepared	Analyzed	Flags
Client ID:	I4-AREPL-4GMW-14-G	W				
Laboratory ID:	05-144-12					
Vinyl Chloride	9.8	0.40	EPA 8260C	5-22-14	5-22-14	
1,1-Dichloroethene	ND	0.40	EPA 8260C	5-22-14	5-22-14	
(trans) 1,2-Dichloroethene	e 0.79	0.40	EPA 8260C	5-22-14	5-22-14	
(cis) 1,2-Dichloroethene	81	0.40	EPA 8260C	5-22-14	5-22-14	
Trichloroethene	ND	0.40	EPA 8260C	5-22-14	5-22-14	
Tetrachloroethene	ND	0.40	EPA 8260C	5-22-14	5-22-14	
Surrogate:	Percent Recovery	Control Limits				
Dibromofluoromethane	112	62-122				
Toluene-d8	96	70-120				
4-Bromofluorobenzene	102	71-120				

HALOGENATED VOLATILES EPA 8260C

			Date	Date	
Result	PQL	Method	Prepared	Analyzed	Flags
I-AREPL-4GMW-15-G	W				
05-144-13					
9.6	0.20	EPA 8260C	5-22-14	5-22-14	
ND	0.20	EPA 8260C	5-22-14	5-22-14	
0.27	0.20	EPA 8260C	5-22-14	5-22-14	
8.9	0.20	EPA 8260C	5-22-14	5-22-14	
0.86	0.20	EPA 8260C	5-22-14	5-22-14	
ND	0.20	EPA 8260C	5-22-14	5-22-14	
Percent Recovery	Control Limits				
116	62-122				
101	70-120				
105	71-120				
	9.6 ND 0.27 8.9 0.86 ND Percent Recovery 116 101	1-AREPL-4GMW-15-GW	P-AREPL-4GMW-15-GW 05-144-13 9.6 0.20 EPA 8260C ND 0.20 EPA 8260C 0.27 0.20 EPA 8260C 8.9 0.20 EPA 8260C 0.86 0.20 EPA 8260C ND 0.20 EPA 8260C Percent Recovery Control Limits 116 62-122 101 70-120	Result PQL Method Prepared I-AREPL-4GMW-15-GW 05-144-13 9.6 0.20 EPA 8260C 5-22-14 ND 0.20 EPA 8260C 5-22-14 0.27 0.20 EPA 8260C 5-22-14 8.9 0.20 EPA 8260C 5-22-14 0.86 0.20 EPA 8260C 5-22-14 ND 0.20 EPA 8260C 5-22-14 Percent Recovery Control Limits 116 62-122 62-122 101 70-120 62-120	Result PQL Method Prepared Analyzed I-AREPL-4GMW-15-GW 05-144-13 5-22-14 5-22-14 9.6 0.20 EPA 8260C 5-22-14 5-22-14 ND 0.20 EPA 8260C 5-22-14 5-22-14 0.27 0.20 EPA 8260C 5-22-14 5-22-14 8.9 0.20 EPA 8260C 5-22-14 5-22-14 0.86 0.20 EPA 8260C 5-22-14 5-22-14 ND 0.20 EPA 8260C 5-22-14 5-22-14 Percent Recovery Control Limits 116 62-122 62-122 101 70-120 62-120

HALOGENATED VOLATILES EPA 8260C

				Date	Date	
Analyte	Result	PQL	Method	Prepared	Analyzed	Flags
Client ID:	14-AREPL-MW80-GW					
Laboratory ID:	05-144-14					
Vinyl Chloride	ND	0.20	EPA 8260C	5-22-14	5-22-14	
1,1-Dichloroethene	ND	0.20	EPA 8260C	5-22-14	5-22-14	
(trans) 1,2-Dichloroethene	e ND	0.20	EPA 8260C	5-22-14	5-22-14	
(cis) 1,2-Dichloroethene	ND	0.20	EPA 8260C	5-22-14	5-22-14	
Trichloroethene	ND	0.20	EPA 8260C	5-22-14	5-22-14	
Tetrachloroethene	0.82	0.20	EPA 8260C	5-22-14	5-22-14	
Surrogate:	Percent Recovery	Control Limits				
Dibromofluoromethane	116	62-122				
Toluene-d8	100	70-120				
4-Bromofluorobenzene	106	71-120				

HALOGENATED VOLATILES EPA 8260C

				Date	Date	
Analyte	Result	PQL	Method	Prepared	Analyzed	Flags
Client ID:	14-AREPL-MW60-GW	1				
Laboratory ID:	05-144-15					
Vinyl Chloride	ND	10	EPA 8260C	5-22-14	5-22-14	
1,1-Dichloroethene	ND	10	EPA 8260C	5-22-14	5-22-14	
(trans) 1,2-Dichloroethene	e ND	10	EPA 8260C	5-22-14	5-22-14	
(cis) 1,2-Dichloroethene	ND	10	EPA 8260C	5-22-14	5-22-14	
Trichloroethene	ND	10	EPA 8260C	5-22-14	5-22-14	
Tetrachloroethene	1700	10	EPA 8260C	5-22-14	5-22-14	
Surrogate:	Percent Recovery	Control Limits				
Dibromofluoromethane	107	62-122				
Toluene-d8	94	70-120				
4-Bromofluorobenzene	98	71-120				

HALOGENATED VOLATILES EPA 8260C

				Date	Date	
Analyte	Result	PQL	Method	Prepared	Analyzed	Flags
Client ID:	14-AREPL-TB					
Laboratory ID:	05-144-16					
Vinyl Chloride	ND	0.20	EPA 8260C	5-22-14	5-22-14	
1,1-Dichloroethene	ND	0.20	EPA 8260C	5-22-14	5-22-14	
(trans) 1,2-Dichloroethene	ND	0.20	EPA 8260C	5-22-14	5-22-14	
(cis) 1,2-Dichloroethene	ND	0.20	EPA 8260C	5-22-14	5-22-14	
Trichloroethene	ND	0.20	EPA 8260C	5-22-14	5-22-14	
Tetrachloroethene	ND	0.20	EPA 8260C	5-22-14	5-22-14	
Surrogate:	Percent Recovery	Control Limits				
Dibromofluoromethane	108	62-122				
Toluene-d8	99	70-120				
4-Bromofluorobenzene	98	71-120				

HALOGENATED VOLATILES EPA 8260C METHOD BLANK QUALITY CONTROL

				Date	Date	
Analyte	Result	PQL	Method	Prepared	Analyzed	Flags
Laboratory ID:	MB0522W1					
Vinyl Chloride	ND	0.20	EPA 8260C	5-22-14	5-22-14	
1,1-Dichloroethene	ND	0.20	EPA 8260C	5-22-14	5-22-14	
(trans) 1,2-Dichloroethene	ND	0.20	EPA 8260C	5-22-14	5-22-14	
(cis) 1,2-Dichloroethene	ND	0.20	EPA 8260C	5-22-14	5-22-14	
Trichloroethene	ND	0.20	EPA 8260C	5-22-14	5-22-14	
Tetrachloroethene	ND	0.20	EPA 8260C	5-22-14	5-22-14	
Surrogate:	Percent Recovery	Control Limits				
Dibromofluoromethane	113	62-122				
Toluene-d8	101	70-120				
4-Bromofluorobenzene	99	71-120				

HALOGENATED VOLATILES EPA 8260C SB/SBD QUALITY CONTROL

					Per	cent	Recovery		RPD	
Analyte	e Result Spike Level Recover		overy	Limits	RPD	Limit	Flags			
SPIKE BLANKS										
Laboratory ID:	SB05	22W1								
	SB	SBD	SB	SBD	SB	SBD				
1,1-Dichloroethene	10.5	10.9	10.0	10.0	105	109	63-142	4	17	
Benzene	9.45	10.1	10.0	10.0	95	101	78-125	7	15	
Trichloroethene	9.73	10.0	10.0	10.0	97	100	80-125	2	15	
Toluene	9.74	10.0	10.0	10.0	97	100	80-125	2	15	
Chlorobenzene	9.45	9.68	10.0	10.0	95	97	80-140	2	15	
Surrogate:										
Dibromofluoromethane					107	110	62-122			
Toluene-d8					99	99	70-120			
4-Bromofluorobenzene					97	100	71-120			

DISSOLVED IRON EPA 6010C

Matrix: Water Units: ug/L (ppb)

				Date	Date	
Analyte	Result	PQL	EPA Method	Prepared	Analyzed	Flags
Lab ID:	05-144-01					
Client ID:	14-AREPL-MW10-GW					
Iron	11000	56	6010C		5-27-14	
Lab ID: Client ID:	05-144-03 14-AREPL-MW5-GW					
Iron	7200	56	6010C		5-27-14	
Lab ID:	05-144-04					
Client ID:	05-144-04 14-AREPL-MW6-GW					
Iron	1100	56	6010C		5-27-14	
Lab ID:	05-144-05					
Client ID:	14-AREPL-MW28-GW					
Iron	130	56	6010C		5-27-14	
Lab ID:	05-144-13					
Client ID:	14-AREPL-4GMW-15-GW					
Iron	7600	56	6010C		5-27-14	

DISSOLVED IRON EPA 6010C METHOD BLANK QUALITY CONTROL

Date Analyzed: 5-27-14

Matrix: Water
Units: ug/L (ppb)

Lab ID: MB0527DM1

Analyte Method Result PQL

Iron 6010C **ND** 56

DISSOLVED IRON EPA 6010C DUPLICATE QUALITY CONTROL

Date Analyzed: 5-27-14

Matrix: Water
Units: ug/L (ppb)

Lab ID: 05-144-04

Sample Duplicate

Analyte Result Result RPD PQL Flags

Iron 1070 1080 1 56

DISSOLVED IRON EPA 6010C MS/MSD QUALITY CONTROL

Date Analyzed: 5-27-14

Matrix: Water
Units: ug/L (ppb)

Lab ID: 05-144-04

	Spike		Percent		Percent		
Analyte	Level	MS	Recovery	MSD	Recovery	RPD	Flags
Iron	22200	23400	101	23100	99	1	

Data Qualifiers and Abbreviations

- A Due to a high sample concentration, the amount spiked is insufficient for meaningful MS/MSD recovery data.
- B The analyte indicated was also found in the blank sample.
- C The duplicate RPD is outside control limits due to high result variability when analyte concentrations are within five times the quantitation limit.
- E The value reported exceeds the quantitation range and is an estimate.
- F Surrogate recovery data is not available due to the high concentration of coeluting target compounds.
- H The analyte indicated is a common laboratory solvent and may have been introduced during sample preparation, and be impacting the sample result.
- I Compound recovery is outside of the control limits.
- J The value reported was below the practical quantitation limit. The value is an estimate.
- K Sample duplicate RPD is outside control limits due to sample inhomogeneity. The sample was re-extracted and re-analyzed with similar results.
- L The RPD is outside of the control limits.
- M Hydrocarbons in the gasoline range are impacting the diesel range result.
- M1 Hydrocarbons in the gasoline range (toluene-napthalene) are present in the sample.
- N Hydrocarbons in the lube oil range are impacting the diesel range result.
- N1 Hydrocarbons in diesel range are impacting lube oil range results.
- O Hydrocarbons indicative of heavier fuels are present in the sample and are impacting the gasoline result.
- P The RPD of the detected concentrations between the two columns is greater than 40.
- Q Surrogate recovery is outside of the control limits.
- S Surrogate recovery data is not available due to the necessary dilution of the sample.
- T The sample chromatogram is not similar to a typical _____
- U The analyte was analyzed for, but was not detected above the reported sample quantitation limit.
- U1 The practical quantitation limit is elevated due to interferences present in the sample.
- V Matrix Spike/Matrix Spike Duplicate recoveries are outside control limits due to matrix effects.
- W Matrix Spike/Matrix Spike Duplicate RPD are outside control limits due to matrix effects.
- X Sample extract treated with a mercury cleanup procedure.
- X1- Sample extract treated with a Sulfuric acid/Silica gel cleanup procedure.
- Y The calibration verification for this analyte exceeded the 20% drift specified in method 8260C, and therefore the reported result should be considered an estimate. The overall performance of the calibration verification standard met the acceptance criteria of the method.

Z -

ND - Not Detected at PQL PQL - Practical Quantitation Limit RPD - Relative Percent Difference

May 29, 2014

Microseeps/Pace Analytical Energy Services, LLC 220 William Pitt Way

Pittsburgh, PA 15238

Phone: (412) 826-5245 Fax: (412) 826-3433

David Baumeister OnSite Environmental, Inc. 14648 NE 95th Street Redmond, WA 98052

RE: 20266.008.01.02

Microseeps Workorder: 12223

Povein Rove

Dear David Baumeister:

Enclosed are the analytical results for sample(s) received by the laboratory on Wednesday, May 21, 2014. Results reported herein conform to the most current NELAC standards, where applicable, unless otherwise narrated in the body of the report.

If you have any questions concerning this report, please feel free to contact me.

Sincerely,

Robbin Robl 05/29/2014

rrobl@microseeps.com

Customer Service Representative

Enclosures

As a valued client we would appreciate your comments on our service. Please email info@microseeps.com.

Total Number of Pages

Page 1 of 12

LABORATORY ACCREDITATIONS & CERTIFICATIONS

Accreditor: Pennsylvania Department of Environmental Protection, Bureau of Laboratories

Accreditation ID: 02-00538

Scope: NELAP Non-Potable Water and Solid & Hazardous Waste

Accreditor: NELAP: State of Florida, Department of Health, Bureau of Laboratories

Accreditation ID: E87832

Scope: Clean Water Act (CWA) Resource Conservation and Recovery Act (RCRA)

Accreditor: South Carolina Department of Health and Environmental Control, Office of Environmental

Laboratory Certification

Accreditation ID: 89009003

Scope: Clean Water Act (CWA); Resource Conservation and Recovery Act (RCRA)

Accreditor: NELAP: State of Louisiana, Department of Environmental Quality

Accreditation ID: 04104

Scope: Solid and Chemical Materials; Non-Potable Water

Accreditor: NELAP: New Jersey, Department of Environmental Protection

Accreditation ID: PA026

Scope: Non-Potable Water; Solid and Chemical Materials

Accreditor: NELAP: New York, Department of Health Wadsworth Center

Accreditation ID: 11815

Scope: Non-Potable Water; Solid and Hazardous Waste

Accreditor: State of Connecticut, Department of Public Health, Division of Environmental Health

Accreditation ID: PH-0263

Scope: Clean Water Act (CWA) Resource Conservation and Recovery Act (RCRA)

Accreditor: NELAP: Texas, Commission on Environmental Quality

Accreditation ID: T104704453-09-TX Scope: Non-Potable Water

Accreditor: State of New Hampshire

Accreditation ID: 299409

Scope: Non-potable water

Accreditor: State of Georgia
Accreditation ID: Chapter 391-3-26

Scope: As per the Georgia EPD Rules and Regulations for Commercial Laboratories, Microseeps is

accredited by the Pennsylvania Department of Environmental Protection Bureau of Laboratories under the National Environmental Laboratory Approval Program (NELAC).

SAMPLE SUMMARY

Workorder: 12223 20266.008.01.02

Lab ID	Sample ID	Matrix	Date Collected	Date Received
122230001	14-AREPL-MW-10-GW	Water	5/15/2014 16:12	5/21/2014 10:45
122230002	14-AREPL-MW-5-GW	Water	5/14/2014 18:20	5/21/2014 10:45
122230003	14-AREPL-MW-6-GW	Water	5/13/2014 17:08	5/21/2014 10:45
122230004	14-AREPL-MW-28-GW	Water	5/14/2014 16:03	5/21/2014 10:45
122230005	14-AREPL-46MW-15-GW	Water	5/15/2014 10:54	5/21/2014 10:45

Report ID: 12223 - 526614

Page 3 of 12

ANALYTICAL RESULTS

Workorder: 12223 20266.008.01.02

Lab ID:

122230001

Date Received: 5/21/2014 10:45 Matrix: Water

Sample ID:

14-AREPL-MW-10-GW

Date Collected: 5/15/2014 16:12

Parameters	Results Units	PQL	MDL DF	Prepared	Ву	Analyzed	Ву	Qual
RISK - MICR								
Analysis Desc: AM20GAX	Analy	ical Method: A	M20GAX					
Methane	0.23 ug/l	0.10	0.042 1			5/28/2014 17:34	BW	
Ethane	0.0059J ug/l	0.025	0.0020 1			5/28/2014 17:34	BW	
Ethene	0.015J ug/l	0.025	0.0030 1			5/28/2014 17:34	BW	

ANALYTICAL RESULTS

Workorder: 12223 20266.008.01.02

Lab ID:

122230002

Date Received: 5/21/2014 10:45

Matrix:

Water

Sample ID:

14-AREPL-MW-5-GW

Date Collected: 5/14/2014 18:20

Parameters	Results Units	PQL	MDL D	DF	Prepared	Ву	Analyzed	Ву	Qual
RISK - MICR									
Analysis Desc: AM20GAX	Analyl	ical Method: A	M20GAX						
Methane	0.25 ug/l	0.10	0.042 1	1			5/28/2014 17:45	BW	
Ethane	0.014J ug/l	0.025	0.0020 1	1			5/28/2014 17:45	BW	
Ethene	0.013J ug/l	0.025	0.0030 1	1			5/28/2014 17:45	BW	

ANALYTICAL RESULTS

Workorder: 12223 20266.008.01.02

Lab ID: 122230003

Date Received: 5/21/2014 10:45

Matrix: Water

Sample ID:

14-AREPL-MW-6-GW

Date Collected: 5/13/2014 17:08

Parameters	Results Units	PQL	MDL DF	Prepared	Ву	Analyzed	Ву	Qual
RISK - MICR								
Analysis Desc: AM20GAX	Analy	tical Method: A	M20GAX					
Methane	0.26 ug/l	0.10	0.042 1			5/27/2014 13:00	BW	
Ethane	0.018J ug/l	0.025	0.0020 1			5/27/2014 13:00	BW	
Ethene	0.015J ug/l	0.025	0.0030 1			5/27/2014 13:00	BW	

Fax: (412) 826-3433

ANALYTICAL RESULTS

Workorder: 12223 20266.008.01.02

Lab ID:

122230004

Date Received: 5/21/2014 10:45

:45 Matrix:

Water

Sample ID:

14-AREPL-MW-28-GW

Date Collected: 5/14/2014 16:03

Parameters	Results Units	PQL	MDL DF	Prepared	Ву	Analyzed	Ву	Qual
RISK - MICR								
Analysis Desc: AM20GAX	Analy	ical Method: A	M20GAX					
Methane	260 ug/l	0.10	0.042 1			5/28/2014 17:55	BW	
Ethane	0.11 ug/l	0.025	0.0020 1			5/28/2014 17:55	BW	
Ethene	4.9 ug/l	0.025	0.0030 1			5/28/2014 17:55	BW	

Water

ANALYTICAL RESULTS

Workorder: 12223 20266.008.01.02

Lab ID: 122230005

Date Received: 5/21/2014 10:45 Matrix:

Sample ID: 14

14-AREPL-46MW-15-GW

Date Collected: 5/15/2014 10:54

Parameters	Results Units	PQL	MDL DF	Prepared	Ву	Analyzed	Ву	Qual
RISK - MICR								
Analysis Desc: AM20GAX	Analy	ical Method: A	M20GAX					
Methane	1300 ug/l	0.10	0.042 1			5/28/2014 18:04	BW	
Ethane	0.30 ug/l	0.025	0.0020 1			5/28/2014 18:04	BW	
Ethene	6.3 ug/l	0.025	0.0030 1			5/28/2014 18:04	BW	

ANALYTICAL RESULTS QUALIFIERS

Workorder: 12223 20266.008.01.02

DEFINITIONS/QUALIFIERS

Disclaimer: The Pennsylvania Department of Environmental Protection (PADEP) has decided to no longer recognize analyses that do not

produce data for primary compliance, for NELAP accreditation. The methods affected by this decision are AM20GAx, AM21G, SW846 7199 and AM4.02. The laboratory shall continue to administer the NELAP/TNI standard requirements in the performance

of these methods.

MDL Method Detection Limit. Can be used synonymously with LOD; Limit Of Detection.

PQL Practical Quanitation Limit. Can be used synonymously with LOQ; Limit Of Quantitation.

ND Not detected at or above reporting limit.

DF Dilution Factor.

S Surrogate.

RPD Relative Percent Difference.

% Rec Percent Recovery.

U Indicates the compound was analyzed for, but not detected at or above the noted concentration.

J Estimated concentration greater than the set method detection limit (MDL) and less than the set reporting limit (PQL).

Report ID: 12223 - 526614

Page 9 of 12

QUALITY CONTROL DATA

Workorder: 12223 20266.008.01.02

QC Batch: DISG/3796 Analysis Method:

AM20GAX

QC Batch Method: AM20GAX

Associated Lab Samples: 122230003

METHOD BLANK: 27946

Parameter	Units	Blank Result	Reporting Limit Qualifiers	
RISK				
Methane	ug/l	0.10 U	0.10	
Ethane	ug/l	0.025 U	0.025	
Ethene	ug/l	0.025 U	0.025	

LABORATORY CONTROL SAMPLE & LCSD: 27947

27948

Parameter	Units	Spike Conc.	LCS Result	LCSD Result	LCS % Rec	LCSD % Rec	% Rec Limit	RPD	Max RPD Qualifiers
RISK									
Methane	ug/l	750	690	700	93	93	80-120	0	20
Ethane	ug/l	38	37	38	98	100	80-120	2	20
Ethene	ug/l	35	34	35	97	100	80-120	3	20

QUALITY CONTROL DATA

Workorder: 12223 20266.008.01.02

QC Batch: DISG/3801

Analysis Method:

AM20GAX

QC Batch Method: AM20GAX

Associated Lab Samples:

122230001, 122230002, 122230004, 122230005

METHOD BLANK: 27987

Parameter	Units	Blank Resu l t	Reporting Limit Qualifiers	
RISK				
Methane	ug/l	0.10 U	0.10	
Ethane	ug/l	0.025 U	0.025	
Ethene	ug/I	0.025 U	0.025	

LABORATORY CONTROL SAMPLE & LCSD: 27988

27989

Parameter	Units	Spike Conc.	LCS Result	LCSD Result	LCS % Rec	LCSD % Rec	% Rec Limit	RPD	Max RPD Qualifiers
RISK									
Methane	ug/l	750	760	760	102	102	80-120	0	20
Ethane	ug/l	38	40	40	105	104	80-120	0.96	20
Ethene	ug/l	35	37	36	105	103	80-120	1.9	20

QUALITY CONTROL DATA CROSS REFERENCE TABLE

Workorder: 12223 20266.008.01.02

Lab ID	Sample ID	Prep Method	Prep Batch	Analysis Method	Analysis Batch
122230003	14-AREPL-MW-6-GW			AM20GAX	DISG/3796
122230001	14-AREPL-MW-10-GW			AM20GAX	DISG/3801
122230002	14-AREPL-MW-5-GW			AM20GAX	DISG/3801
122230004	14-AREPL-MW-28-GW			AM20GAX	DISG/3801
122230005	14-AREPL-46MW-15-GW			AM20GAX	DISG/3801

Report ID: 12223 - 526614

Page 12 of 12

	1			
Page	-(of	1	

Date/Time: _____

12223 14648 NE 95th Street, Redmond, WA 98052 · (425) 883-3881 Subcontract Laboratory: Muroseep **Turnaround Request:** Attention: 1 Day 2 Day 3 Day Address: ____ Standard) Phone Number: _____

Other:

Laboratory Reference #:	05-144
Project Manager:	David Baumeister
	dbaumeister@onsite-env.com
Project Number:	20266.008.01.02
Project Name:	

Lab ID	Sample Identification	Date Sampled	Time Sampled	Matrix	# of Cont.		Analysis	
1	14-AREPL-MW-10-6W		1612	GW	2	Methane	Ethane	Ethene
2	14-AFOPL-MW-5-GW	5/4/14			1	1	1	
3	14-ARBPL MW-6-6W	5/13/14	1708					
4	14-AROPL-MW-28-GW	5/14/14	1603					
5	14-APEPL-46MW-15-6W	51514	1054	U	V	U		V
	Signature	Con	npany		Date	Time	Comments/	Special Instructions
Relinqu	sished by:	ONE			1-/	1600		
Receive	ed by: QDUOT PAES		ups		5-21.14	1045	2°C	
Relinqu	ished by:							
Receive	ed by:							
Relinqu	ished by:							
Receive	ed by:							

NON-CONFORMANCE FORM

Microseeps Pro	oject Number:
Date: 5.21.14 Time of Receipt: 10 45	Receiver: <u>LY</u>
Client: On Site	
REASON FOR NON-CONFORMANCE:	
1. 14- AREPL-MW-5-GW	coctime 1820
	Vialstine 1800
2. 14-AREPL-MW-28-GW	COC time 1603
	Vials time 1620.
	-
20	
	1.35
ACTION TAKEN: Client name: David Baumeister	Date: 5/22/14 Time: Email
Per attachea email- log accordi	ing to coc.
8. W	No. 1 and 1
	,

Date: 5 23 14

Customer Service Initials:

Ruth Welsh

From:

David Baumeister < dbaumeister@onsite-env.com>

Sent:

Thursday, May 22, 2014 4:25 PM

To:

Chris Thomas

Subject:

RE: 20266.008.01.02 #12223

Hi Chris. Go with the COC please.

David

Please note that OnSite Environmental, Inc. will be closed on Memorial Day, May 26th.

If you are in need of a hardcopy of your report or your invoice, please let me know.

David A. Baumeister Project Manager

Celebrating over 20 years in business

14648 NE 95th Street, Redmond, WA 98052 T: 425.883.3881 C: 206.550.2483 <u>dbaumeister@onsite-env.com</u> www.onsite-env.com

This e-mail message contains confidential or proprietary information of OnSite Environmental, Inc., and may be "Attorney-Client Privileged" and protected as "Work Product". If you are not the intended recipient, you may not use copy or disclose the message or any information contained within. If you have received this message in error, please notify the sender by reply e-mail and delete it. Thank you.

This email has been scanned by AppRiver's SecureTideÔ virus protection system. For more information please visit http://www.appriver.com

A Please consider the environment before printing this email

From: Chris Thomas [mailto:CThomas@microseeps.com]

Sent: Thursday, May 22, 2014 12:52 PM

To: David Baumeister

Subject: 20266.008.01.02 #12223

David,

We received samples for project #20266.008.01.02. For sample 14-AREPL-MW-5-GW the COC time was 18:20 but the vials time was 18:00.

Also, for sample 14-AREPL-MW-28-GW the COC time was 16:03 but the vials time was 16:20. If you could please let us know what time to use for log-in we can proceed with the analysis.

Thanks, Chris

Christopher Thomas Microseeps, a Division of Pace Analytical Energy Services, LLC 220 William Pitt Way Pittsburgh, PA 15238

Office: 412-826-5245 Direct: 412-826-4481

Disclaimer: This message contains confidential information and is intended only for the individual(s) named. If you are not the named addressee, you should permanently delete this e-mail from your system and should not disseminate, distribute or copy this e-mail. E-mail transmission cannot be guaranteed to be secure or error-free as information delivered over the internet could be corrupted, lost, destroyed, delayed, or contain viruses

Cooler Receipt Form

ien	: Name: <u>On % te</u> Project: <u>20266.00</u>	8.01	1.02	Lab V	Nork Order: <u>12223</u>									
Λ	Shinning/Container Information /circle appropriate response	١												
A.	A. Shipping/Container Information (circle appropriate response)													
	Courier: FedEx UPS USPS Client Other: Air bill Present: Yes No													
	Tracking Number: 1268 EIW 01 9130 6976													
	Custody Seal on Cooler/Box Present: Yes No Seals Intact: Yes No													
	Cooler/Box Packing Material: Bubble Wrap Absorbent Foam Other:													
	Type of Ice: Wet Blue None Ice Intact: Yes Melted													
	Cooler Temperature: 20 C Radiation Screened: Ye	s (No	Ch	ain of	Custody Present Yes No									
	Comments:													
В.	Laboratory Assignment/Log-in (check appropriate response)													
	, and a second property of the second propert	Tues	T		T'a									
		YES	NO	N/A	Comment Reference non-Conformance									
	Chain of Custody properly filled out	1/												
	Chain of Custody relinquished	1												
	Sampler Name & Signature on COC		/											
1	Containers intact	V												
Ī	Were samples in separate bags	11/												
Ì	Sample container labels match COC	1/	. /											
	Sample name/date and time collected													
	Sufficient volume provided	~			•									
	Microseeps containers used	/												
	Are containers properly preserved for the requested testing? (as labeled)	~												
	If an unknown preservation state, were containers checked? Exception: VOA's coliform			V	If yes, see pH form.									
	Was volume for dissolved testing field filtered, as noted on the COC? Was volume received in a preserved container?			/										
	Comments:													
,	Cooler contents examined/red	eived l	bγ :	Li	Date: 5-21-14									
	Project Manage	r Revie	w:	RE	Date: <u>5. 21.14</u> 2 Date: <u>5.21.14</u>									

		_		
			0-014-	
ě.	-IN		OnSite	
			Environmental	inc.

Chain of Custody

Page 1 of 2

	Analytical Laboratory Testing Services 14648 NE 95th Street • Redmond, WA 98052	Turnaround Request (in working days) Laboratory Number:								1							0	5 -	1	4 4	14											
Compan	Phone: (425) 883-3881 • www.onsite-env.com Y TINA ENGINEERING Number:	(Check One)			U	LE						HENE		2																		
20	266.008.01.02	2 Day		3 Days		TOTAL DEGANC	TRATE/NITRITE	h	NO		RON		ETHANE/ETHEN	1	Z70D/SR	1914																
Project I	REAL ESTATE	X Stand	dard (7 Days) analysis 5 Da	ıys)	ço.	100 A	TE/N	SULFATE	TOTAL IRON		<u>2</u> 2 ≥	(love)	X E	ides 806	sticides 8	includes 8				1664A												
Project I	Manager: 6A STEWART			2 7	Containers	101	TRA	SML	TOTA	*	SOLV B270D/S	43	W	o-Postie	orus Pes	old Herb	etals	Slade		(essear)												
Sampled	ITAS, GEILICH, FOX		(other)		of	H HCID	1 2	ğ	× Q I	es 8260C	DISS STATES	evel-we	METHAN	ochlorin	hdsorldo	nated An	PCRA I	MTCAN	Metals	pue lio		×			% Moisture							
Lab ID	Sample Identification	Date Sampled	Time Sampled	Matrix	Number	DIMATE	#WATE	1	HAME.	Volatil	Femily S	H ditter	ME	Organ	Organ	Official	Potal	Tetal	4101	HEM		,-			% Mo							
-	14-AREPL-MW10-GW	5 15	1612	GW	10	X	X	X	X	Χ	X	,	X	,																		
	14-AREPL-MW-7-GW	5 13	1045	6W	3					Χ																						
	14-APEPL-MW5-GW	5/14	1820	BW	10	X	X	X	X	X	X	1	X																			
4	14-AREPL-MW6-GW	5/13	1708	GW	10	X	X	X	X	X	X	X																				
5	14-AREPL-MW28-GW	5/14	1603	GW	10	X	X	X	X	Χ	X	7	X																			
6	14-AREPL-MW12S-GW	5/13	1350	GW	3					X																						
7	14-AREPL-MW13-GW	5/13	1530	GW	3					Χ																						
	14-AREPL-DPB24-GW	5/14	1047	GW	3					χ																						
9	14-AREPL-MWB-GW	5/14	1245	GW	3					X	4																					
10	14-AREPL - 4GMW-12-GW	5/14	1451	GW	3					X																						
	Signature		ompany				Date	1		Time		-	Comme																			
Relinqu	dly Ala		Ahtm				5	16	/14	14	15	_ (TOC	by 1	DIM EPA	35	53:	2														
Receiv	ed N	_)<	A5.	X0:	E	LL	5	171	14	10	VIC	> 5	SULF	ATE I	by ,	MST	MD	516	7-0	7												
Relinquished												Total	Iron	lun	64	EPA-6010 Lby EPA-6010 DGAX																
Received												_ '	NEE	by	4M2	DGA	X															
Relinquished												_	X-	- PC	E	TC	E	, c T)CE	Ξ,	- DO	Œ,	1;1	-DC	E,VC							
Received																																
Review	ved/Date		Reviewed/Da	te				2 (2.4				C	Chroma	itograr	ns wi	th fina	al rep	oort [1													

OnSite Environmental Inc.

Chain of Custody

Page 2 of 2

Analytical Laboratory Testing Services 14648 NE 95th Street • Redmond, WA 98052		Turnaround Request (in working days)					rato	ory	Nui	mbe							05-144								
Phone: (425) 883-3881 • www.onsite-env.com Company: At See First page	- Som	(Check One) Same Day 1 Day							*																
respect Number.	2 Day		3 Days		ORGAN! APRION		m	NOX		D IR		ALE/E	1	MIS/GD/SIM	des 8151A-						,				
Project Name: Project Manager:	Stand (TPH	dard (7 Days) analysis 5 Da	nys)	ers	TOTAL	FEET NITRATE	SWIFATE	TOTAL IRON		PISSOLVED	/SIM	THE STATE OF THE S	icides 80	asttoides 6	Dict				1664A-						
Sampled by:		(other)		of Co	77 alon	Ox/BTEX >	₩ SW	*	8260	22	Hevel PAHS	METHANE/ETHANE/ETHANE/ETHEVE	Organochlorine Pesticides 8081B	Organophosphorus Pesticides	Shiorinated Acid Her	Fotal ROBA Metals	Total MTCA Metals	etals	Hand-grease					lure	
Lab ID Sample Identification	Date Sampled	Time Sampled	Matrix	Number	MATPH	MATERI	Hdilwin	THE THE	Volatiles	Malegen	Semiyok (with low	N S S S S S S S S S S S S S S S S S S S	Organoc	Отданор	Chilorina	Total Pic	Total MT	TCLP Metals	HEM (oil and g					% Moisture	
11 14-AREPL-4GMW-13-GW	5 15	1310	GW	3					Χ																
12 14-AREPL-4GMW-14-GW	5/15	1448	GW	3					X																
13 14-AREPL-4GMW-15-GW	5/15	1054	GW	16	X	X	X	Χ	X	X		X													
14 14-AREPL-MW80-GW	5/14	1250	GW	3					X		(
15 14-AREPL-MW60-GW	5/13	1708	GW	3					X																
16 14-AREPL-TB	5 13	0900	GW	2					X																
	2																								
	- 1																								
Signature	C	ompany	. 200			Date	1	,	Time			Comme	nts/Sp	ecial	Instr	uction	ns					168			
Received Received		Ahta	7			5/	16/	14	025	415															
Relinquished		OVI	(ot	u		7/1	17/1	4	16	XC	>														
Received											-														
Relinquished																									
Received																									
Reviewed/Date		Reviewed/Da	te									Chroma	tograr	ns wi	ith fin	al rep	port [
Data Package: St	andard 🗌 L	evel III 🗌 Le	evel IV		Е	lectror	nic Dat	ta Deli	iverab	les (El	DDs)]													

14648 NE 95th Street, Redmond, WA 98052 • (425) 883-3881

July 8, 2014

Olga Stewart Ahtna Engineering Services LLC 305 34th Avenue Fairbanks, AK 99701

Re: Analytical Data for Project 20266.008.01.02

Laboratory Reference No. 1405-144B

Dear Olga:

Enclosed are the analytical results and associated quality control data for samples submitted on May 17, 2014.

Please note that this report reflects the addition of the MDLs to the analytical data.

The standard policy of OnSite Environmental, Inc. is to store your samples for 30 days from the date of receipt. If you require longer storage, please contact the laboratory.

We appreciate the opportunity to be of service to you on this project. If you have any questions concerning the data, or need additional information, please feel free to call me.

Sincerely,

David Baumeister Project Manager

Enclosures

Project: 20266.008.01.02

Case Narrative

Samples were collected on June 5, 2014 and received by the laboratory on June 5, 2014. They were maintained at the laboratory at a temperature of 2°C to 6°C.

General QA/QC issues associated with the analytical data enclosed in this laboratory report will be indicated with a reference to a comment or explanation on the Data Qualifier page. More complex and involved QA/QC issues will be discussed in detail below.

Project: 20266.008.01.02

VOLATILES EPA 8260C

					Date	Date	
Analyte	Result	PQL	MDL	Method	Prepared	Analyzed	Flags
Client ID:	14-AREPL-MW5-GW						
Laboratory ID:	05-144-03						
Vinyl Chloride	ND	10	3.1	EPA 8260C	5-22-14	5-22-14	
1,1-Dichloroethene	ND	10	3.4	EPA 8260C	5-22-14	5-22-14	
(trans) 1,2-Dichloroethene	e ND	10	3.0	EPA 8260C	5-22-14	5-22-14	
(cis) 1,2-Dichloroethene	ND	10	2.3	EPA 8260C	5-22-14	5-22-14	
Trichloroethene	ND	10	5.5	EPA 8260C	5-22-14	5-22-14	
Tetrachloroethene	1100	10	3.3	EPA 8260C	5-22-14	5-22-14	B1
Surrogate:	Percent Recovery	Control Limits					
Dibromofluoromethane	109	62-122					
Toluene-d8	94	70-120					
4-Bromofluorobenzene	99	71-120					

Project: 20266.008.01.02

VOLATILES EPA 8260C

					Date	Date	
Analyte	Result	PQL	MDL	Method	Prepared	Analyzed	Flags
Client ID:	14-AREPL-MW6-GW						
Laboratory ID:	05-144-04						
Vinyl Chloride	ND	10	3.1	EPA 8260C	5-22-14	5-22-14	
1,1-Dichloroethene	ND	10	3.4	EPA 8260C	5-22-14	5-22-14	
(trans) 1,2-Dichloroethene	e ND	10	3.0	EPA 8260C	5-22-14	5-22-14	
(cis) 1,2-Dichloroethene	ND	10	2.3	EPA 8260C	5-22-14	5-22-14	
Trichloroethene	ND	10	5.5	EPA 8260C	5-22-14	5-22-14	
Tetrachloroethene	1600	10	3.3	EPA 8260C	5-22-14	5-22-14	B1
Surrogate:	Percent Recovery	Control Limits					
Dibromofluoromethane	107	62-122					
Toluene-d8	93	70-120					
4-Bromofluorobenzene	97	71-120					

Project: 20266.008.01.02

VOLATILES EPA 8260C

-					Date	Date	
Analyte	Result	PQL	MDL	Method	Prepared	Analyzed	Flags
Client ID:	14-AREPL-MW60-GW						
Laboratory ID:	05-144-15						
Vinyl Chloride	ND	10	3.1	EPA 8260C	5-22-14	5-22-14	
1,1-Dichloroethene	ND	10	3.4	EPA 8260C	5-22-14	5-22-14	
(trans) 1,2-Dichloroethene	e ND	10	3.0	EPA 8260C	5-22-14	5-22-14	
(cis) 1,2-Dichloroethene	ND	10	2.3	EPA 8260C	5-22-14	5-22-14	
Trichloroethene	ND	10	5.5	EPA 8260C	5-22-14	5-22-14	
Tetrachloroethene	1700	10	3.3	EPA 8260C	5-22-14	5-22-14	B1
Surrogate:	Percent Recovery	Control Limits					
Dibromofluoromethane	107	62-122					
Toluene-d8	94	70-120					
4-Bromofluorobenzene	98	71-120					

Project: 20266.008.01.02

VOLATILES by EPA 8260C METHOD BLANK QUALITY CONTROL

					Date	Date	
Analyte	Result	PQL	MDL	Method	Prepared	Analyzed	Flags
Laboratory ID:	MB0522W1						
Vinyl Chloride	ND	0.20	0.063	EPA 8260C	5-22-14	5-22-14	
1,1-Dichloroethene	ND	0.20	0.068	EPA 8260C	5-22-14	5-22-14	
(trans) 1,2-Dichloroethene	ND	0.20	0.059	EPA 8260C	5-22-14	5-22-14	
(cis) 1,2-Dichloroethene	ND	0.20	0.046	EPA 8260C	5-22-14	5-22-14	
Trichloroethene	ND	0.20	0.11	EPA 8260C	5-22-14	5-22-14	
Tetrachloroethene	0.095	0.20	0.065	EPA 8260C	5-22-14	5-22-14	
Surrogate:	Percent Recovery	Control Limits					
Dibromofluoromethane	113	62-122					
Toluene-d8	101	70-120					
4-Bromofluorobenzene	99	71-120					

Project: 20266.008.01.02

VOLATILES by EPA 8260C SB/SBD QUALITY CONTROL

					Per	cent	Recovery		RPD	
Analyte	Res	sult	Spike	Level	Rece	overy	Limits	RPD	Limit	Flags
SPIKE BLANKS										
Laboratory ID:	SB05	22W1								
	SB	SBD	SB	SBD	SB	SBD				
1,1-Dichloroethene	10.5	10.9	10.0	10.0	105	109	63-142	4	17	
Benzene	9.45	10.1	10.0	10.0	95 101		78-125	7	15	
Trichloroethene	9.73	10.0	10.0	10.0	97	100	80-125	2	15	
Toluene	9.74	10.0	10.0	10.0	97	100	80-125	2	15	
Chlorobenzene	9.45	9.68	10.0	10.0	95	97	80-140	2	15	
Surrogate:										
Dibromofluoromethane					107	110	62-122			
Toluene-d8					99	99	70-120			
4-Bromofluorobenzene					97	100	71-120			

Data Qualifiers and Abbreviations

- A Due to a high sample concentration, the amount spiked is insufficient for meaningful MS/MSD recovery data.
- B The analyte indicated was also found in the blank sample.
- B1 Tetrachloroethene was also found in the blank sample at a level between the MDL and the PQL.
- C The duplicate RPD is outside control limits due to high result variability when analyte concentrations are within five times the quantitation limit.
- E The value reported exceeds the quantitation range and is an estimate.
- F Surrogate recovery data is not available due to the high concentration of coeluting target compounds.
- H The analyte indicated is a common laboratory solvent and may have been introduced during sample preparation, and be impacting the sample result.
- I Compound recovery is outside of the control limits.
- J The value reported was below the practical quantitation limit. The value is an estimate.
- K Sample duplicate RPD is outside control limits due to sample inhomogeneity. The sample was re-extracted and re-analyzed with similar results.
- L The RPD is outside of the control limits.
- M Hydrocarbons in the gasoline range are impacting the diesel range result.
- M1 Hydrocarbons in the gasoline range (toluene-napthalene) are present in the sample.
- N Hydrocarbons in the lube oil range are impacting the diesel range result.
- N1 Hydrocarbons in diesel range are impacting lube oil range results.
- O Hydrocarbons indicative of heavier fuels are present in the sample and are impacting the gasoline result.
- P The RPD of the detected concentrations between the two columns is greater than 40.
- Q Surrogate recovery is outside of the control limits.
- S Surrogate recovery data is not available due to the necessary dilution of the sample.
- T The sample chromatogram is not similar to a typical ______.
- U The analyte was analyzed for, but was not detected above the reported sample quantitation limit.
- U1 The practical quantitation limit is elevated due to interferences present in the sample.
- V Matrix Spike/Matrix Spike Duplicate recoveries are outside control limits due to matrix effects.
- W Matrix Spike/Matrix Spike Duplicate RPD are outside control limits due to matrix effects.
- X Sample extract treated with a mercury cleanup procedure.
- X1- Sample extract treated with a Sulfuric acid/Silica gel cleanup procedure.
- Y The calibration verification for this analyte exceeded the 20% drift specified in method 8260C, and therefore the reported result should be considered an estimate. The overall performance of the calibration verification standard met the acceptance criteria of the method.

		_		
			0-014-	
ě.	-IN		OnSite	
			Environmental	inc.

Chain of Custody

Page 1 of 2

	Analytical Laboratory Testing Services 14648 NE 95th Street • Redmond, WA 98052	Turnaround Request (in working days) Laboratory Number:								n te							0	5 -	1	4 4	1				
Compar	Phone: (425) 883-3881 • www.onsite-env.com Y TINA ENGINEERING Number:	Same	(Check One)	1 Day		U	LE						HENE		5										
20	1266.008.01.02	2 Day		3 Days		TOTAL DEGANC	TRATE/NITRITE	h	NO		RON		ETHANE/ETHEN	4	Z70D/Sn	1914									
Project	REAL ESTATE	X Stand	dard (7 Days) analysis 5 Da	ıys)	ço.	200	TE/N	SULFATE	TOTAL IRON		<u>2</u> 2 ≥	Comple	THE STATE OF THE S	ides-806	sticides 8	includes 8				1664A					
Project 01	Manager: 6A STEWART			2 7	Containers	TOT	TRA	SML	TOTA	*	SOLV B270D/S	43	W	e-Pestis	orus Pes	old Herb	etals	Slade		(essear)			-		
Sample	ITAS, GEILICH, FOX		(other)		of	H HCID	12	Ϋ́Θ	× Q I	es 8260C	DISS STATES	evel-we	METHAN	ochlerin	hophosph	nated At	PCRA I	MTCAN	Metals	pue lio		×			% Moisture
Lab ID	Sample Identification	Date Sampled	Time Sampled	Matrix	Number	PINATE	#WATE	14A	HAME.	Volatil	Femily S	Addition of	ME	Organ	Organ	Official	Potal	Tetal	4101	HEM		,-			% Mo
- 0	14-AREPL-MW10-GW	5 15	1612	GW	10	X	X	X	X	Χ	X	,	X	,											
	14-AREPL-MW7-GW	5 13	1045	6W	3					X															
	14-AREPL-MW5-GW	5/14	1820	BW	10	X	X	X	X	X	X	X													
4	14-AREPL-MW6-GW	5/13	1708	GW	10	X	X	X	X	X	X	X													
5	14-AREPL-MW28-GW	5/14	1603	GW	10	X	X	X	X	Χ	X	7	X												
6	14-AREPL-MW12S-GW	5/13	1350	GW	3					X															
7	14-AREPL-MW13-GW	5/13	1530	GW	3					Χ															
8	14-AREPL-DPB24-GW	5/14	1047	GW	3					Χ															
9	14-AREPL-MW8-GW	5/14	1245	GW	3					X	8														
10	14-AREPL - 4GMW-12-GW	5/14	1451	GW	3					X															
	Signature		ompany				Date	1		Time		-	Comme												
Relinq	dly Ale		Ahtm				5	16	/14	14	15	TOC by SM5310B N/N by EPA 353.2													
Receiv	ed N	5 m 063.						171	14	10	VIC	> 5	MUF	HE!	py 1	ASTI	MD	516	7-0	1					
Relinq	uished											- 7	Total	Iron	lun	264	I EP	246	010						
Receiv	ed												zisso NELE	by 1	4M2	DGA	××								
	uished											_ ;	X-	- PC	E	To	E	, cT	DCE	Ξ,	- DO	Œ,	1;1	-DC	E,VC
Receiv																									
Reviewed/Date Reviewed/Date								2 02				C	hroma	togran	ns wi	th fina	al rep	oort [1						

OnSite Environmental Inc.

Chain of Custody

Page 2 of 2

Analytical Laboratory Testing Services 14648 NE 95th Street • Redmond, WA 98052	Turnaround Request (in working days) Laboratory Numbe																		05	-	1 4	4	
Phone: (425) 883-3881 • www.onsite-env.com Company: At See First page	Samo	(Check One)	1 Day		21	NITRITE				IRON		THENE		\$			T						
President Number.	2 Day		3 Days		ORGAN! APRION		JD.	NON		ED IR		NE/E	1	MIS/G01/SIM	des 8151A-								
Project Name: Project Manager:	X Stand	dard (7 Days) analysis 5 Da	ays)	ers	TOTAL	FOTO NITRATE	SWIFATE	TOTAL IRON	4.	PISSOLVED	//SIM	THE STATE OF THE S	ticides 80	esticides-(Die.)-1664A-				
Sampled by:	-	(other)		of Co	21 anon	GX/BTEX	₹ SW	*	8260	1	atiles 82700 r-level PALIs	METHANE/ETHANE/ETHANE/ETHENE	Organochlorine Pesticides 8084B	Organophosphorus Pesticides	Chiorinated Aold Her	Fotal RORA Metals	Total MTGA Metals	sieto	Land-grease				ture
Lab ID Sample Identification	Date Sampled	Time Sampled	Matrix	Number	MATTAN	NWTPH	Hdlaw	1013	Volatiles	Halogen	Semiyol (with lov	M W W	Organoc	Отданор	Chiorina	Total PK	Total M	TCLP Metals	HEW (oil and g				% Moisture
11 14-AREPL-4GMW-13-GW	5 15	1310	GW	3					Χ														
12 14-AREPL-4GMW-14-GW	5/15	1448	GW	3					X														
13 14-AREPL-4GMW-15-GW	5/15	1054	GW	16	X	X	X	Χ	X	X		X											
14 14-AREPL-MW80-GW	5/14 1250 GW 3 X																						
15 14-AREPL-MW60-GW	5/13	1708	GW	3					X														
16 14-AREPL-TB	5 13	0900	GW	2					X														
	a																						
Relinquished Signature	C	ompany				Date	1	,	Time			Comme	nts/Sp	oecial	Instr	uction	ns						
Received All All All All All All All All All Al		Ahta	7 -	_		5/	16/	14	025	415													
Relinquished		OVI	(v t	u		$\geq l$	110	4	16	XC	>												
Received																							
Relinquished								1															
Received																							
Reviewed/Date		Reviewed/Da	te									Chroma	togra	ms wi	ith fin	al rep	oort [
Data Package: S	Data Package: Standard ☐ Level III ☐ Level IV ☐ Electronic Data Deliver										DDs)												

Certificate of Analysis: Gene-Trac® Dehalococcoides Assay

Customer: Olga Stewart, Ahtna Engineering SiREM Reference: S-3215

Project: AK Real Estate Report Date: 2-Jun-14

Customer Reference: 20266.008.01.02 Data Files: iQ5-DHC-QPCR-1114

iQ5-DB-DHC-QPCR-0471 iQ5-TBA-QPCR-0046

Table 1: Test Results

Customer Sample ID	SiREM Sample ID	Sample Collection Date	Sample Matrix	Percent Dhc *	Dehalococcoides Enumeration/Liter **
14-AREPL-MW-5-GW	DHC-10436	14-May-14	Groundwater	NA	4 x 10 ³ U
14-AREPL-MW-28-GW	DHC-10437	14-May-14	Groundwater	0.04 - 0.1 %	1 x 10 ⁶
14-AREPL-MW-6-GW	DHC-10438	13-May-14	Groundwater	NA	3 x 10 ³ U

Notes:

Percent *Dehalococcoides* (Dhc) in microbial population. This value is calculated by dividing the number of Dhc 16S ribosomal ribonucleic acid (rRNA) gene copies by the total number of bacteria as estimated by the mass of DNA extracted from the sample. Range represents normal variation in Dhc enumeration.

Based on quantification of Dhc 16S rRNA gene copies. Dhc are generally reported to contain one 16S rRNA gene copy per cell; therefore, this number is often interpreted to represent the number of Dhc cells present in the sample.

J The associated value is an estimated quantity between the method detection limit and quantitation limit.

U Not detected, associated value is the quantification limit.

B Analyte was detected in the method blank within an order of magnitude of the test sample

NA Not applicable as *Dehalococcoides* not detected and/or quantifiable DNA not extracted from the sample.

I Sample inhibited the test reaction based on inability to PCR amplify extracted DNA with universal primers.

E Extracted genomic DNA was not detected in sample.

Analyst:

Jennifer Wilkinson

Senior Laboratory Technician

Approved:

Ximena Druar, B.Sc.

Genetic Testing Coordinator

Table 2: Detailed Test Parameters, Gene-Trac Test Reference S-3215

Customer Sample ID	14-AREPL-MW-5-GW	14-AREPL-MW-28-GW	14-AREPL-MW-6-GW
SiREM Dhc Sample ID	DHC-10436	DHC-10437	DHC-10438
Date Received	20-May-14	20-May-14	20-May-14
Sample Temperature	2 ℃	2 °C	2 °C
Filtration Date	21-May-14	21-May-14	21-May-14
Volume Used for DNA Extraction	300 mL	300 mL	500 mL
DNA Extraction Date	21-May-14	21-May-14	21-May-14
DNA Concentration in Sample (extractable)	5165 ng/L	5815 ng/L	4993 ng/L
PCR Amplifiable DNA	Detected	Detected	Detected
Dhc qPCR Date Analyzed	22-May-14	22-May-14	22-May-14
Laboratory Controls (see Table 3)	Passed	Passed	Passed
Comments			

Notes:

Refer to Table 3 for detailed results of controls.

°C = degrees Celsius

DNA = Deoxyribonucleic acid

PCR = polymerase chain reaction qPCR = quantitative PCR Dhc = Dehalococcoides

ng/L = nanograms per liter mL = milliliters

Table 3: Gene-Trac Dhc Control Results, Test Reference S-3215

Laboratory Control	Analysis Date	Control Description	Spiked Dhc 16S rRNA Gene Copies per Liter	Recovered Dhc 16S rRNA Gene Copies per Liter	Comments
Positive Control Low Concentration	22-May-14	qPCR with KB1 genomic DNA (CSLD-0752)	1.1 x 10 ⁵	7.2 x 10 ⁴	
Positive Control High Concentration	22-May-14	qPCR with KB1 genomic DNA (CSHD-0752)	1.4 x 10 ⁷	1.3 x 10 ⁷	
DNA Extraction Blank	22-May-14	DNA extraction sterile water (FB-2190)	0	2.6 x 10 ³ U	
Negative Control	22-May-14	Tris Reagent Blank (TBD-0711)	0	2.6 x 10 ³ U	

Notes:

Dhc = Dehalococcoides

DNA = Deoxyribonucleic acid

qPCR = quantitative PCR

16S rRNA = 16S ribosomal ribonucleic acid

U Not detected, associated value is the quantification limit.

Chain-of-Custody Form

Nº 3796

130 Research Lane, Suite 2 Guelph, Ontario, Canada N1G 5G3 Phone (519) 822-2265 or toll free 1-866-251-1747 Fax (519) 822-3151 www.siremlab.com

Project Name AK Real Estate	Project #	20266.008,01.02 Prese									Anal	ysis					4			4		
Project Manager Olga Stewart				41	Preser	vative	0	T														
Email Address Ostewart@ahtra.net						1	1	1	7	7	7	7	1	7	/	7	1		reservati . None	ve Key		
Company Altra Engineering						/	/			/	/	/		/	/	/		1	. HCI			
Address 110 W 38th Ave Suite 2	260 A				1	luc /	0/	941	/	//	/ /	/ /	/ /	/ /	/	/ /			. Other . Other			
Phone # 907 646 2969 Fax #					1/5	Gene-Tracon	Gene-Trace		/	/				/	/							
Sampler's Signature Clay Colon Name Sampler's P	rinted Ale	x Ge	lies		Sen	Gen	Gene	/ /	/	/ ,												
Customer Sample ID	Samp	oling	Matrix	# of Containers														0	ther Infor	mation		
14-ARTPI -MW-5-GW	Date 5/14/14	Time	GW	Containers	X		+	1		_								2	710			
14-AREPL -MW-5-GW 14-AREPL -MW-28-GW 14-AREPL - MW-6 - GW	5/14/14	14 1610 GW 1 X					1									3	-0	000	700	7		
14-AREPL-MW-G-GW	5/13/14	1/14 1708 GW 1 X																	308			
	. ,	14 1708 GW 1 X						4														
							+	-	_	_												
							+	+	+			S#		721 (5								
- <u> </u>													p,									
		-	1	e:													T X					
		9.																			11 11	
Cooler Condition: Sample Receipt	P.O. #		Billing Inf	ormation						Time I	Reque	sted		For La	ab Use	Only						
Cooler Temperature:	Bill To:						$-\parallel$	No Ru:	rmal													
				-			\parallel	Nu	511													
Custody Seals: Yes No				1		3	$-\parallel$															
			S- 700	_94	_										osal #:							
Relinquished By: Signature Signature Signature		Relinquished By: Signature				gnature	Re	eceive	d By:			Signa	ture	Relin	quish	ed By:		Signa		Received	Ву:	
Printed Dynily Welton Printed Name O. Ves	Poli					nted me						Printe Name				-		Printe Name				
Firm Ahma Engherry Firm Sike	· ·	Firm Firm										Firm						Firm				
Date/Time 14 9:21 Date/Time may 201	4.2	Date/Time Dat										Date/Time Date/Time										

Certificate of Analysis: Gene-Trac® VC, Vinyl Chloride Reductase (vcrA) Assay

Customer: Olga Stewart, Ahtna Engineering SiREM Reference: S-3215

Project: AK Real Estate Report Date: 7/4/2014

Customer Reference: 20266.008.01.02 Data Files: MyiQ-VC-QPCR-0669

VC-QPCR-check-gel-0671 MyiQ-DB-VC-QPCR-0388

Table 1b: Test Results

Customer Sample ID	SiREM Sample ID	Sample Collection Date	Sample Matrix	Percent vcrA	Vinyl Chloride Reductase (<i>vcrA</i>) Gene Copies/Liter
14-AREPL-MW-28-GW	VCR-4886	14-May-14	Groundwater	0.01 - 0.04 %	4 x 10 ⁵

Notes:

Percent *vcrA* in microbial population. This value is calculated by dividing the number of vinyl chloride reductase A (*vcrA*) gene copies quantified by the total number of bacteria estimated to be in the sample based on the mass of DNA extracted from the sample. Range represents normal variation in enumeration of *vcrA*.

J The associated value is an estimated quantity between the method detection limit and quantitation limit.

U Not detected, associated value is the quantification limit.

B Analyte was detected in the method blank within an order of magnitude of the test sample.

NA Not applicable as vcrA not detected and/or quantifiable DNA not extracted from the sample.

I Sample inhibited the test reaction based on inability to PCR amplify extracted DNA with universal primers.

C Correction factor applied to correct for non-specific PCR amplification products, value is an estimated quantity.

Ben Reside

Analyst:

Laboratory Technician

Approved:

Phil Dennis, M.A.Sc., Senior Manager

Table 2: Detailed Test Parameters, Gene-Trac Test Reference S-3215

Customer Sample ID	14-AREPL-MW-5-GW	14-AREPL-MW-28-GW	14-AREPL-MW-6-GW
SiREM Dhc Sample ID	DHC-10436	DHC-10437	DHC-10438
SiREM vcrA Sample ID	N/A	VCR-4886	N/A
Date Received	20-May-14	20-May-14	20-May-14
Sample Temperature	2 °C	2 °C	2 °C
Filtration Date	21-May-14	21-May-14	21-May-14
Volume Used for DNA Extraction	300 mL	300 mL	500 mL
DNA Extraction Date	21-May-14	21-May-14	21-May-14
DNA Concentration in Sample (extractable)	5165 ng/L	5815 ng/L	4992.5 ng/L
PCR Amplifiable DNA	Detected	Detected	Detected
Dhc qPCR Date Analyzed	22-May-14	22-May-14	22-May-14
vcrA qPCR Date Analyzed	N/A	2-Jul-14	N/A
Laboratory Controls (see Tables 3 & 4)	Passed	Passed	Passed
Comments			

Notes:

Refer to Tables 3 & 4 for detailed results of controls.

°C = degrees Celsius

N/A = not applicable

PCR = polymerase chain reaction qPCR = quantitative PCR Dhc = *Dehalococcoides*

vcrA = vinyl chloride reductase

ng/L = nanograms per liter

mL = milliliters

DNA = Deoxyribonucleic acid

Table 4: Gene-Trac VC Control Results, Test Reference S-3215

Laboratory Control	Analysis Date	Control Description	Spiked <i>vcrA</i> reductase Gene Copies per Liter	Recovered <i>vcrA</i> reductase Gene Copies per Liter	Comments
Positive Control Low Concentration	2-Jul-14	qPCR with KB1 genomic DNA (CSLV-0537)	9.5 x 10⁴	1.3 x 10⁵	
Positive Control High Concentration	2-Jul-14	qPCR with KB1 genomic DNA (CSHV-0537)	9.6 x 10 ⁶	1.1 x 10 ⁷	
DNA Extraction Blank	22-May-14	DNA extraction sterile water (FB-2190)	0	2.6 x 10 ³ U	
Negative Control	2-Jul-14	Tris Reagent Blank (TBV-0508)	0	2.6 x 10 ³ U	

Notes:

DNA = Deoxyribonucleic acid

qPCR = quantitative PCR

16S rRNA = 16S ribosomal ribonucleic acid

U Not detected, associated value is the quantification limit.

vcrA = vinyl chloride reductase

CHAIN-OF-CUSTODY / Analytical Request Document

The Chain-of-Custody is a LEGAL DOCUMENT. All relevant fields must be completed accurately.

Pace Analytical www.pacelabs.com								10 4	LLO		JOINE		11010	vant n	OIGO I	1100	t bo comple	104 400	aratory.						
Microseeps	0			P	140	50	02		0												Pag	e:	1	of /	
Section A Required Client Information:	Section E Required I	Projec		mation:					Section	on C e Inform	mation:												000	100	
Company: AHTNA ENGINEERING Address W. 38th Avenue 2004 Anchorage, AK 99503 Email To Stewart Cantna net	Report To:	O	104	Stew	art				Attenti	ion: V	ald	a,	IK	oik	,								UUL	1468	
Addraso W. 38th Avenue 200A	Сору То:	Be	ns	autic	h				Comp	an Ath	ith	1 41	na	ine	eni	in	1	REG	ULAT	ORY	AGENCY	•			
Anchorage, AK 99503			-/						Addre	310	08	eac	on	BI	vd	J		Г	NPDE	s ſ	GROU	ND WAT			G WATER
Email Torstewart Cantha net	Purchase (Pace C Refere	uote 5	ACK	am	en	to.	CA	9	5691	T	UST	ſ	RCRA		X	OTHER	NONE
Phog07865 3865 Fax: —	Project Na	me: A	K	Real E	state	,			Pace P Manag	rolect	RU	BI	N	ROE	31			Site	Locat	tion	410	clea			
Requested Due Date/TAT: STD.	Project Na	mber:	2	0266	008.0	11.02				rofile #:		_	_	-					STAT	TE:	Ala	>Ka			
		_							_							F	Requested	d Anal	ysis Fi	iltere	d (Y/N)				
Section D Matrix Required Client Information MATRIX		left)	(d)		COLLE	CTED					Pres	ervat	tives		N/A	N	N								
Drinking Wa	ter DW	(see valid codes to left)	C=COMP)		JOLLE	OTED		NO		П	11	1			Ħ	8		\top	$\dashv \dashv$	\Box	\top	\sqcap			
Water Waste Wate Product	wT r WW P	alid co	AB C	COMPO		COMPOS END/GR		COLLECTION					Н	_		Carbor	Chlanin	11				ξ			
SAMPLE ID Soil/Solid	SL OL	v ees)	(G=GRAB					COLL	SS SS				Н	힣	1	1	10	11				(X)			
(A-Z, 0-9 / ,-) VVIDE	WP AR		1 1					P AT	# OF CONTAINERS	_				Zink Acetate & NaOH Other	Test	8	3					Residual Chlorine (Y/N)			
Sample IDs MUST BE UNIQUE Tissue Other	TS OT	CODE	TYPE					TEM	7LNC	erve erve				etate	/sis	SIA	8					a C			(
#		MATRIX	SAMPLE					SAMPLE	Ä C	Unpreserved H-SO.	3 0			k Ao	4 Analysis	200		11				sidu			
		ž	SA	DATE	TIME	DATE	TIME	_	#	키		모	BAK	칠	₹	0	28	\perp	\perp	Ц		8	Pace	Project N	o./ Lab I.D.
1 14-AREPL-MW5-GW		M		5/14		_		17		Н		X	Ш	_		X	X	\perp		Н					
2 14-AREPL-MW28-GW 3 14-AREPL-MW6-GW		W	6	514	1635	\rightarrow		18	_	1	\dashv	X	\perp	_	-	X	X		-	\vdash					
1 1/1 1/21-00 2011 1-0	14/	WI	9	5/13	1708			18			+	X	\vdash	-	-	K	X	++		\vdash	++				
4 14-AKEVL-46MW-15-6	VV	MAI	6	وااد	1057			10		\vdash	\forall	4	+	_		尸	+^+	+	_	\vdash	++-	\vdash			
6		T	\Box								\forall	+	H		1	Г				\forall					
7			П								\Box					Г									
8						1																			
9											Ш					L									
10	<u> </u>	L									\perp		\perp			L		+	-	\vdash					
11		╀	\vdash							H	+		+	-	-	H	+++	+	-	\vdash	+				
ADDITIONAL COMMENTS		REI	LINQU	ISHED BY	AFFILIATIO	ON	DATE		T	IME	۲		AC	CEPTE	D BY	/AF	FFILIATION	-	DAT	E	TIME		SAMP	LE CONDIT	IONS
CSIA FOR POE		16.		Ch							+	108		$\overline{}$	-		PAE	_			6020	2-		4	
CSIA FIR PCE	-	rey	0	411			2 (16)	14	1	11/	X	W		2/			THE	>	0,11.	17 6	0830	2	3	9_	
	-	_									-									\dashv					
	_										+									-					
					CAMPI -	- NAME :	ND CION	FUE																	7
C	RIGINA	\L					ND SIGNA			Ur	4		11.1	/11	_							i. S	Received on Ice (Y/N)	Custody Sealed Cooler (Y/N)	Samples Intact (Y/N)
					-		ne of SAMP		_/	ME Ou	X	90	Щ	M	r set	0	ATE Signer	d _	-11.	1.		Temp in °C	teceiv Ice ()	Cust	mple: (Y/I
						SIGNATUR	RE of SAMP	LER		10	.1	12	1	1		1	MM/DD/YY)	: 3	5/16	111	4		<u>m</u>	Š	S

Client

Ahtna Engineering Services

110 W. 38th Ave, 200A

Anchorage, AK 99503

Project

AK Real Estate

Project # Report to 20266.008.01.02 Olga Stewart

Tel:

907.865.3865

Email:

ostewart @ ahtna.net

PACE Analytical

220 William Pitt Way

Pittsburgh, PA 15238

Tel: 412.826.5245

Report by: Dr. Yi Wang

Director, CSIA Center of Excellence

Cell: 609.721.2843

Email: yi.wang@zymaxusa.com

REPORT OF ENVIRONMENTAL FORENSICS ISOTOPE ANALYSES

Date Received: 5/16/2014

Date Reported: 6/24/2014

Water samples submitted for δ^{13} C (% PDB) and δ^{37} Cl (% SMOC) ratios of dissolved tetrachloroethylene (PCE)

Pace CSIA	Sample	δ^{13} C	δ ³⁷ CI
Lab Number	Description	PCE	PCE
P1405002-1	14-AREPL-MW5-GW	-34.07	0.40
P1405002-2	14-AREPL-MW28-GW	-36.34	-1.21
P1405002-3	14-AREPL-MW6-GW	-33.79	0.31
P1405002-4	14-AREPL-4GMW-15-GW	^J -33.43	U -
	Analytical Precision (1σ)	0.30	0.43

PCE: Tetrachloroethene

N/A: Sample had lower concentration of PCE - Not Analyze for 2D-CSIA Upon Client's Request

CSIA: Compound Specific Isotope Analysis

GC-IRMS: Gas Chromatography-Isotope Ratio Mass Spectrometry

	δ^{13} C	δ ³⁷ Cl
Quality Control STDs	PCE	PCE
QC-1	-32.03	1.98
QC-2	-31.60	1.37
Mean	-31.82	1.68
Analytical Precision (1σ)	0.30	0.43

Pace CSIA Forensic Isotope Services

Product or Dissolved Organics: Chlorinated Solvents, Oil, Extract, Fraction and Kerogen

3D-CSIA of ¹³C, ³⁷Cl, and ²H for PCE, TCE, DCE, MTBE, BTEX, PAHs, Pesticides, Alkanes, Gasoline and Oil; Bulk ¹³C, ²H, ¹⁸O, ³⁴S, and ¹⁵N Gas Sample

Gas Composition and 2D-CSIA of 13 C and 2 H of C1 to C5; 13 C of CO₂; 14 C of C1 and CO₂; 34 S of H₂S; 15 N and 18 O of N₂O gas Water and Dissolved Inorganics

²H, ³H and ¹⁸O; ³⁴S and ¹⁸O of dissolved sulfate; ³⁴S of dissolved H₂S

¹⁵N and ¹⁸O of dissolved Nitrate; ¹⁵N of Ammonia; ¹³C of dissolved CO₂ and Carbonate/Bicarbonate

Soil and Minerals

¹³C, ¹⁸O, ¹⁵N, ³⁴S, D/H; ¹⁴C of carbonate or organics

Post-Analysis Forensic Isotope Data Interpretation

J-Target analyte produced a low peak signal and the result is considered usable to ± 2‰, but not the standard ± 0.5‰

^U-Either there was no peak corresponding to the target analyte or that such a peak did not produce a reliable CSIA result Method: CSIA for ¹³C/¹²C and D/H by GC-IRMS, for ³⁷CI/³⁵CI by GC-qMS

NON-CONFORMANCE FORM

Microseeps Project Number: P1405002
Date: <u>5.19.14</u> Time of Receipt: <u>0830</u> Receiver: <u>19</u>
Client: Ahtna
REASON FOR NON-CONFORMANCE:
14- AREPL-MW6-GW: 5 vials had ID o
14-AREPL-MW8-GW: 5 vials had ID g
& collection.
ACTION TAKEN: Client name: Olga Stwart Date: 5/19/14 Time: email
Per attached email-log all vials as 14-AREPL-MW6-GW.

Date: 5/19/14

Customer Service Initials:

Robbin Robl

From:

Olga Stewart < ostewart@ahtna.net>

Sent:

Monday, May 19, 2014 1:46 PM

To:

Robbin Robl

Cc:

Emily Freitas; Alexander Geilich

Subject: Attachments: RE: AK Real Estate / 20266.008.01.02 RE: Request for Quote for Ahtna Engineering Services for CSIA and dissolved gases

P1405002

analyses

Hi Robin,

Glad to hear you got the samples. The sample ID 14-AREPL-MW6-GW is correct for reporting.

Thank you for the heads up on the extended turnaround time on Chlorine. If the lab is opening in June, will all the samples be processed in the order in which they were received during the closure? And if that is the case, when can we expect results? Are there alternatives for a quicker turnaround such as sending the samples through the university like done previously?

We are anticipating similar pricing to that which was given for Gaffney (attached). It would be good to have a quote specifically for this project.

Let me know if you have any further questions.

Thanks,

Olga

Olga Stewart, P.E. Environmental Engineer

Ahtna Engineering Services, LLC

110 West 38th Avenue, Suite 200A, Anchorage, AK 99503 907.646.2969 OF | 907.297.8039 CL | ostewart@ahtna.net

This email may contain Ahtna confidential, official use only, or proprietary information for the sole use of the intended recipient. Any review or distribution by others is strictly prohibited. Unless stated to the contrary, any opinions or comments are personal to the writer and do not represent the official view of Ahtna. If you have received this e-mail in error, please notify the sender immediately by reply e-mail and then delete this message from your system.

From: Robbin Robl [mailto:rrobl@microseeps.com]

Sent: Monday, May 19, 2014 9:24 AM

To: Olga Stewart

Subject: AK Real Estate / 20266.008.01.02

Importance: High

Hi Olga,

We received samples today for your project AK Real Estate / 20266.008.01.02.

P1405032

I received a non-conformance for sample 14-AREPL-MW**6**-GW. Five (5) of the sample vials were received with a sample ID of 14-AREPL-MW**8**-GW. I would appreciate it if you can please tell me which sample ID is correct for reporting purposes.

I also wanted to let you know that there will be an extended turnaround time for the Chlorine isotope CSIA as we are moving our sister-lab ZymaX from Escondido, CA to our facility here in Pittsburgh, PA at the end of this month. They are hoping to be operational by the 2nd week of June.

Can you please tell me if you have spoken to anyone regarding pricing? If not, I will send you a price quote ASAP.

Thank you! Robbin

Robbin Robl

Pace Analytical Energy Services, LLC 220 William Pitt Way Pittsburgh, PA 15238

Fax: 412-826-3433 Main: 412-826-5245

Direct: 412-826-4483

Disclaimer: This message contains confidential information and is intended only for the individual(s) named. If you are not the named addressee, you should permanently delete this e-mail from your system and should not disseminate, distribute or copy this e-mail. E-mail transmission cannot be guaranteed to be secure or error-free as information delivered over the internet could be corrupted, lost, destroyed, delayed, or contain viruses.

nt Name: <u>Ahtna</u> Project: <u>AK Roal B</u>	Teta	to	Lah V	Vork Order: P140,500								
/ 20266 2	53100 5381	16. C	2	voik Order.								
A. Shipping/Container Information (circle appropriate response												
Courier: FedEx UPS USPS Client Other:	Ai	r bill P	resent	t Yes No								
Tracking Number: 805586962392 Custody Seal on Cooler/Box Present: Yes Seals Intact: Yes No												
												Cooler/Box Packing Material: Bubble Wrap Absorbent
Type of Ice: Wet Blue None Ice Intact: Yes Mel												
Cooler Temperature: 5°C Radiation Screened: Ye	s (No)	Ch	ain of	Custody Present: Yes No								
Comments:												
. Laboratory Assignment/Log-in (check appropriate response)												
4	YES	NO	N/A	Comment Reference non-Conformance								
Chain of Custody properly filled out	V											
Chain of Custody relinquished	-											
Sampler Name & Signature on COC	-											
Containers intact	1											
Were samples in separate bags	V											
Sample container labels match COC		/										
Sample name/date and time collected		V										
Sufficient volume provided	V			•								
Microseeps containers used	/											
Are containers properly preserved for the requested testing? (as labeled)	1											
If an unknown preservation state, were containers checked? Exception: VOA's coliform			V	If yes, see pH form.								
Was volume for dissolved testing field filtered, as noted on												
the COC? Was volume received in a preserved container?			V									
Comments:			- Company Lan									
Cooler contents examined/red	eived	by :	L:									
Project Manage	r Revie	:w:	ff	Date: 5/19/14								

Lab Project Manager:

Robbin Robl

P1405002

Lab Project Num:

Received: 5/19/2014 Report Due: 7/2/2014

Lab Due: 7/1/2014

Client:

Ahtna Engineering Services

Report Level: Standard - Date and Analyst

110 W. 38th Street

Anchorage, AK 99503

Suite 200A

Proj Mgr Olga

Quote #: Q14050002

Stewart

Phone:

907-868-8250

Fax: E-mail:

Client Project Name: **Client Project Num:**

AK Real Estate 20266.008.01.02

Lab Project Comment:

Client Sample Name: Sample Number:

14-AREPL-MW5-GW

P1405002-01A

Sample Date/Time:

5/14/2014 6:10:00PM

Sampled By:

Container Description:

40ml VOA

Container Color: Container Composition: Glass

Clear

Comment:

Container Volume:

320.00 ml

HCL **Container Preservative:** Proposed Disposal Date: 6/27/2014

Fraction Lab Created? No Client Spike Requested? No

PH:

Test Pkg Name	Method	Lab	Subcontract(or)	
Carbon Isotope Analysis Chlorinate	edAM24-DL C	Pittsburgh	None	
Carbon Isotope Area Chlorinated	AM24-AR C	Pittsburgh	None	
Co-elution Check _Chlorinated	8260B	Pittsburgh	None	
VTCL	5030B/8260B	Pittsburgh	None	

Client Sample Name:

AREPL-MW28-GW P1405002-02A

Sample Number: Sample Date/Time:

5/14/2014 4:35:00PM

Sampled By:

Container Description: 40ml VOA Clear Container Color: Container Composition: Glass

Comment:

Container Volume: Container Preservative:

HCL Proposed Disposal Date: 6/27/2014

360.00 ml

Fraction Lab Created? No Client Spike Requested? No

PH:

Test Pkg Name	Method	Lab	Subcontract(or)	
Carbon Isotope Analysis Chlorinate	ed AM24-DL_C	Pittsburgh	None	
Carbon Isotope Area Chlorinated	AM24-AR C	Pittsburgh	None	
Co-elution Check _Chlorinated	8260B	Pittsburgh	None	
VTCL	5030B/8260B	Pittsburgh	None	

Lab Project Manager:

Robbin Robl

Lab Project Num:

P1405002

Received: 5/19/2014 Report Due: 7/2/2014

Lab Due: 7/1/2014

Client Sample Name:

14-AREPL-MW6-GW

Sample Number: Sample Date/Time: P1405002-03A 5/13/2014 5:08:00PM

Sampled By:

Container Description: 40ml VOA

Container Color:

Clear

Container Composition: Glass

Comment:

Container Volume:

360.00 ml

HCL **Container Preservative:** Proposed Disposal Date: 6/27/2014

Fraction Lab Created? Client Spike Requested? No

No

PH:

Test Pkg Name	Method	Lab	Subcontract(or)	
Carbon Isotope Analysis Chlorinate	edAM24-DL C	Pittsburgh	None	
Carbon Isotope Area Chlorinated	AM24-AR C	Pittsburgh	None	
Co-elution Check Chlorinated	8260B	Pittsburgh	None	
VTCL	5030B/8260B	Pittsburgh	None	

Client Sample Name:

14-AREPL-4GMW-15-GW

Sample Number:

P1405002-04A

Sample Date/Time:

5/15/2014 10:54:00AM

Sampled By:

Container Description: 40ml VOA Container Color: Clear

Container Composition: Glass

Comment:

360.00 ml **Container Volume: Container Preservative:** HCL 6/27/2014 Proposed Disposal Date: Fraction Lab Created? No Client Spike Requested? No

PH:

Test Pkg Name	Method	Lab	Subcontract(or)	
Carbon Isotope Analysis Chlorinat	edAM24-DL C	Pittsburgh	None	
Carbon Isotope Area Chlorinated	AM24-AR C	Pittsburgh	None	
Co-elution Check _Chlorinated	8260B	Pittsburgh	None	
VTCL	5030B/8260B	Pittsburgh	None	

THE LEADER IN ENVIRONMENTAL TESTING

ANALYTICAL REPORT

TestAmerica Laboratories, Inc.

TestAmerica Anchorage 2000 West International Airport Road Suite A10 Anchorage, AK 99502-1119

Tel: (907)563-9200

TestAmerica Job ID: 230-108-1

Client Project/Site: Ahtna Engineering Services

For:

Ahtna Engineering Services LLC 560 E 34th Avenue Suite 101 Anchorage, Alaska 99503

Attn: Olga Stewart

Johanna J. Daher

Authorized for release by: 5/22/2014 12:03:20 PM

Johanna Dreher, Project Manager I (907)563-9200 johanna.dreher@testamericainc.com

----- LINKS ------

Review your project results through
Total Access

Have a Question?

Visit us at: www.testamericainc.com

This report has been electronically signed and authorized by the signatory. Electronic signature is intended to be the legally binding equivalent of a traditionally handwritten signature.

Results relate only to the items tested and the sample(s) as received by the laboratory.

Client: Ahtna Engineering Services LLC Project/Site: Ahtna Engineering Services

TestAmerica Job ID: 230-108-1

Table of Contents

Cover Page	1
Table of Contents	2
Definitions/Glossary	3
Case Narrative	4
Detection Summary	5
Client Sample Results	6
Surrogate Summary	10
QC Sample Results	12
QC Association Summary	21
Lab Chronicle	23
Certification Summary	24
Method Summary	25
Sample Summary	26
Chain of Custody	27
Receipt Checklists	29

12

13

14

15

Definitions/Glossary

Client: Ahtna Engineering Services LLC Project/Site: Ahtna Engineering Services

Reporting Limit or Requested Limit (Radiochemistry)

Toxicity Equivalent Factor (Dioxin)

Toxicity Equivalent Quotient (Dioxin)

Relative Percent Difference, a measure of the relative difference between two points

TestAmerica Job ID: 230-108-1

Qualifiers

GC VOA

Qualifier	Qualifier Description
X	Surrogate is outside control limits

Glossary

RL

RPD

TEF

TEQ

Abbreviation	These commonly used abbreviations may or may not be present in this report.
¤	Listed under the "D" column to designate that the result is reported on a dry weight basis
%R	Percent Recovery
CNF	Contains no Free Liquid
DER	Duplicate error ratio (normalized absolute difference)
Dil Fac	Dilution Factor
DL, RA, RE, IN	Indicates a Dilution, Re-analysis, Re-extraction, or additional Initial metals/anion analysis of the sample
DLC	Decision level concentration
MDA	Minimum detectable activity
EDL	Estimated Detection Limit
MDC	Minimum detectable concentration
MDL	Method Detection Limit
ML	Minimum Level (Dioxin)
NC	Not Calculated
ND	Not detected at the reporting limit (or MDL or EDL if shown)
PQL	Practical Quantitation Limit
QC	Quality Control
RER	Relative error ratio

Case Narrative

Client: Ahtna Engineering Services LLC Project/Site: Ahtna Engineering Services

TestAmerica Job ID: 230-108-1

Job ID: 230-108-1

Laboratory: TestAmerica Anchorage

Narrative

Job Narrative 230-108-1

Comments

No additional comments.

Receipt

The samples were received on 5/9/2014 5:00 PM; the samples arrived in good condition, properly preserved and, where required, on ice. The temperature of the cooler at receipt was 15.8° C. The samples were received one hour after collection.

Subcontract

VOCs by 8260 samples were subcontracted to TestAmerica Spokane from TestAmerica Anchorage.

GC VOA

Method(s) AK101: The following sample(s) required a dilution due to the nature of the sample matrix: (230-108-1 DU), (230-108-1 MS), (230-108-1 MSD), 14-AKRE-Cuttings (230-108-1). Because of this dilution, the surrogate spike concentration in the sample was reduced to a level where the recovery calculation does not provide useful information.

Method(s) AK101: Surrogate recovery for the following sample(s) was outside control limits: (230-108-1 DU), (230-108-1 MS), (230-108-1 MSD), 14-AKRE-Cuttings (230-108-1).

Method(s) AK101: The laboratory control sample (LCS) and / or laboratory control sample duplicate (LCSD) for batch 475 recovered outside control limits for the following surrogates: BFB.

Method(s) AK101: The following sample(s) required a dilution due to the nature of the sample matrix: (230-108-1 DU), (230-108-1 MS), (230-108-1 MSD), 14-AKRE-Cuttings (230-108-1). Because of this dilution, the surrogate spike concentration in the sample was reduced to a level where the recovery calculation does not provide useful information. Re-analysis confirmed high TFT surrogate recovery.

No other analytical or quality issues were noted.

GC Semi VOA

Method(s) AK102: The method blank for batch 461 contained DRO above the method detection limit. This target analyte concentration was less than the reporting limit (RL); therefore, re-extraction and/or re-analysis of samples was not performed.

No other analytical or quality issues were noted.

General Chemistry

No analytical or quality issues were noted, other than those described in the Definitions/Glossary page.

VOCs by 8260

No analytical or quality issues were noted, other than those described in the Definitions/Glossary page.

Organic Prep

No analytical or quality issues were noted, other than those described in the Definitions/Glossary page.

4

9

11

40

14

15

Detection Summary

Client: Ahtna Engineering Services LLC Project/Site: Ahtna Engineering Services

Client Sample ID: 14-AKRE-Cuttings

TestAmerica Job ID: 230-108-1

Lab Sample ID: 230-108-1

Analyte	Result	Qualifier	RL		Unit	Dil Fac	D	Method	Prep Type
Gasoline Range Organics (GRO)	150		37		mg/Kg	1	₩	AK101	Total/NA
-C6-C10									
C10-C25	6100		560		mg/Kg	20	₽	AK102 & 103	Total/NA
Analyte	Result	Qualifier	RL	MDL	Unit	Dil Fac	D	Method	Prep Type
n-Propylbenzene	0.644		0.388		mg/kg dry	10.0	₩	EPA 8260C	Total
1,2,4-Trimethylbenzene	1.57		0.388		mg/kg dry	10.0	₽	EPA 8260C	Total
sec-Butylbenzene	0.935		0.388		mg/kg dry	10.0	₩	EPA 8260C	Total
p-Isopropyltoluene	1.35		0.388		mg/kg dry	10.0	₩	EPA 8260C	Total
n-Butylbenzene	1.46		0.388		mg/kg dry	10.0	₩	EPA 8260C	Total

Client Sample ID: 14-AKRE-TB

No Detections.

Lab Sample ID: 230-108-2

This Detection Summary does not include radiochemical test results.

Л

5

7

ŏ

9

11

13

14

15

Client Sample Results

Client: Ahtna Engineering Services LLC Project/Site: Ahtna Engineering Services

Date Collected: 05/09/14 16:30

Date Received: 05/09/14 17:00

Client Sample ID: 14-AKRE-Cuttings

TestAmerica Job ID: 230-108-1

Lab Sample ID: 230-108-1

Matrix: Solid

Percent Solids: 93

Analyte	Result Qualifier	RL	MDL Unit	D	Prepared	Analyzed	Dil Fa
Dichlorodifluoromethane		0.388	mg/kg dry	<u> </u>	05/13/14 13:08	05/13/14 15:32	10.0
Chloromethane	ND	0.116	mg/kg dry	₽	05/13/14 13:08	05/13/14 15:32	10.0
Vinyl chloride	ND	0.0310	mg/kg dry	☼	05/13/14 13:08	05/13/14 15:32	10.0
Bromomethane	ND	0.233	mg/kg dry	₩.	05/13/14 13:08	05/13/14 15:32	10.0
Chloroethane	ND	0.388	mg/kg dry	₩	05/13/14 13:08	05/13/14 15:32	10.0
Trichlorofluoromethane	ND	0.116	mg/kg dry	₩	05/13/14 13:08	05/13/14 15:32	10.0
1,1-Dichloroethene	ND	0.116	mg/kg dry	↓ -	05/13/14 13:08	05/13/14 15:32	10.0
Carbon disulfide	ND	0.388	mg/kg dry	₽	05/13/14 13:08	05/13/14 15:32	10.0
Methylene chloride	ND	0.776	mg/kg dry	₽	05/13/14 13:08	05/13/14 15:32	10.0
Acetone	ND	3.88	mg/kg dry		05/13/14 13:08	05/13/14 15:32	10.0
trans-1,2-Dichloroethene	ND	1.16	mg/kg dry	₽	05/13/14 13:08	05/13/14 15:32	10.0
Methyl tert-butyl ether	ND	0.388	mg/kg dry	₩	05/13/14 13:08	05/13/14 15:32	10.0
1,1-Dichloroethane	ND	0.388	mg/kg dry		05/13/14 13:08	05/13/14 15:32	10.0
cis-1,2-Dichloroethene	ND	0.776	mg/kg dry	₩	05/13/14 13:08	05/13/14 15:32	10.0
2,2-Dichloropropane	ND	0.388	mg/kg dry	₩	05/13/14 13:08	05/13/14 15:32	10.0
Bromochloromethane	ND	0.388	mg/kg dry		05/13/14 13:08	05/13/14 15:32	10.0
Chloroform	ND	0.388	mg/kg dry	₩	05/13/14 13:08	05/13/14 15:32	10.0
Carbon tetrachloride	ND	0.116	mg/kg dry	₽	05/13/14 13:08	05/13/14 15:32	10.0
1,1,1-Trichloroethane	ND	0.388	mg/kg dry	. .	05/13/14 13:08	05/13/14 15:32	10.0
2-Butanone	ND	3.88	mg/kg dry	₽	05/13/14 13:08	05/13/14 15:32	10.0
1,1-Dichloropropene	ND	0.388	mg/kg dry	₽	05/13/14 13:08	05/13/14 15:32	10.0
Benzene	ND	0.0776	mg/kg dry	 \$	05/13/14 13:08	05/13/14 15:32	10.0
1,2-Dichloroethane (EDC)	ND	0.0582	mg/kg dry	₽	05/13/14 13:08	05/13/14 15:32	10.0
Trichloroethene	ND	0.0776	mg/kg dry	₽	05/13/14 13:08	05/13/14 15:32	10.0
Dibromomethane	ND	0.388	mg/kg dry		05/13/14 13:08	05/13/14 15:32	10.0
1,2-Dichloropropane	ND	0.0388	mg/kg dry	₽	05/13/14 13:08	05/13/14 15:32	10.0
Bromodichloromethane	ND	0.0388	mg/kg dry	₽	05/13/14 13:08	05/13/14 15:32	10.0
	ND ND	0.0776			05/13/14 13:08	05/13/14 15:32	10.0
cis-1,3-Dichloropropene Toluene	ND ND	0.388	mg/kg dry		05/13/14 13:08	05/13/14 15:32	10.0
	ND ND	3.88	mg/kg dry		05/13/14 13:08	05/13/14 15:32	10.0
4-Methyl-2-pentanone			mg/kg dry			05/13/14 15:32	
trans-1,3-Dichloropropene	ND	0.0776	mg/kg dry	₩	05/13/14 13:08	05/13/14 15:32	10.0
Tetrachloroethene	ND	0.0776	mg/kg dry	₩	05/13/14 13:08		10.0
1,1,2-Trichloroethane	ND ND	0.0388	mg/kg dry		05/13/14 13:08	05/13/14 15:32	10.0
Dibromochloromethane	ND ND	0.116 0.0776	mg/kg dry	₩	05/13/14 13:08 05/13/14 13:08	05/13/14 15:32	10.0 10.0
1,3-Dichloropropane			mg/kg dry	₩		05/13/14 15:32	
1,2-Dibromoethane	ND ND	0.0194	mg/kg dry	<u>*</u> .	05/13/14 13:08	05/13/14 15:32	10.0
2-Hexanone	ND	3.88	mg/kg dry	*	05/13/14 13:08	05/13/14 15:32	10.0
Ethylbenzene	ND	0.388	mg/kg dry	₩	05/13/14 13:08	05/13/14 15:32	10.0
Chlorobenzene	ND	0.388	mg/kg dry	J.	05/13/14 13:08	05/13/14 15:32	10.0
1,1,1,2-Tetrachloroethane	ND	0.388	mg/kg dry	ψ.	05/13/14 13:08	05/13/14 15:32	10.0
m,p-Xylene	ND	1.55	mg/kg dry	ψ.	05/13/14 13:08	05/13/14 15:32	10.0
o-Xylene	ND	0.776	mg/kg dry		05/13/14 13:08	05/13/14 15:32	10.0
Styrene	ND	0.388	mg/kg dry	☆	05/13/14 13:08	05/13/14 15:32	10.0
Bromoform	ND	0.388	mg/kg dry	ψ.	05/13/14 13:08	05/13/14 15:32	10.0
Isopropylbenzene	ND	0.388	mg/kg dry	T.	05/13/14 13:08	05/13/14 15:32	10.0
n-Propylbenzene	0.644	0.388	mg/kg dry	₩	05/13/14 13:08	05/13/14 15:32	10.0
1,1,2,2-Tetrachloroethane	ND	0.0388	mg/kg dry	₩.	05/13/14 13:08	05/13/14 15:32	10.0
Bromobenzene	ND	0.388	mg/kg dry	₽	05/13/14 13:08	05/13/14 15:32	10.0

TestAmerica Anchorage

5/22/2014

Page 6 of 29

TestAmerica Job ID: 230-108-1

Client: Ahtna Engineering Services LLC Project/Site: Ahtna Engineering Services

Client Sample ID: 14-AKRE-Cuttings

Date Collected: 05/09/14 16:30 Date Received: 05/09/14 17:00 Lab Sample ID: 230-108-1

Matrix: Solid Percent Solids: 93

Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
2-Chlorotoluene	ND		0.388		mg/kg dry	\	05/13/14 13:08	05/13/14 15:32	10.0
1,2,3-Trichloropropane	ND		0.0388		mg/kg dry	₽	05/13/14 13:08	05/13/14 15:32	10.0
4-Chlorotoluene	ND		0.388		mg/kg dry	₩	05/13/14 13:08	05/13/14 15:32	10.0
tert-Butylbenzene	ND		0.388		mg/kg dry	₽	05/13/14 13:08	05/13/14 15:32	10.0
1,2,4-Trimethylbenzene	1.57		0.388		mg/kg dry	₽	05/13/14 13:08	05/13/14 15:32	10.0
sec-Butylbenzene	0.935		0.388		mg/kg dry	₽	05/13/14 13:08	05/13/14 15:32	10.0
p-lsopropyltoluene	1.35		0.388		mg/kg dry	₩	05/13/14 13:08	05/13/14 15:32	10.0
1,3-Dichlorobenzene	ND		0.388		mg/kg dry	₽	05/13/14 13:08	05/13/14 15:32	10.0
1,4-Dichlorobenzene	ND		0.388		mg/kg dry	₽	05/13/14 13:08	05/13/14 15:32	10.0
n-Butylbenzene	1.46		0.388		mg/kg dry	₩	05/13/14 13:08	05/13/14 15:32	10.0
1,2-Dichlorobenzene	ND		0.388		mg/kg dry	₽	05/13/14 13:08	05/13/14 15:32	10.0
1,2-Dibromo-3-chloropropane	ND		1.94		mg/kg dry	₩.	05/13/14 13:08	05/13/14 15:32	10.0
Hexachlorobutadiene	ND		0.388		mg/kg dry	₽	05/13/14 13:08	05/13/14 15:32	10.0
1,2,4-Trichlorobenzene	ND		0.388		mg/kg dry	₩	05/13/14 13:08	05/13/14 15:32	10.0
Naphthalene	ND		0.776		mg/kg dry	₩.	05/13/14 13:08	05/13/14 15:32	10.0
1,2,3-Trichlorobenzene	ND		0.388		mg/kg dry	₩	05/13/14 13:08	05/13/14 15:32	10.0
Xylenes (total)	ND		2.33		mg/kg dry	₩	05/13/14 13:08	05/13/14 15:32	10.0
Surrogate	%Recovery	Qualifier	Limits				Prepared	Analyzed	Dil Fac
Dibromofluoromethane	98.6		42.4 - 163				05/13/14 13:08	05/13/14 15:32	10.0
Toluene-d8	95.3		45.8 - 155				05/13/14 13:08	05/13/14 15:32	10.0
4-bromofluorobenzene	151		41.5 - 162				05/13/14 13:08	05/13/14 15:32	10.0
a,a,a - Trifluorotoluene	118		50 - 150				05/13/14 13:08	05/13/14 15:32	10.0

Method: AK101 - Alaska - Gasoli	ne Range Orga	anics (GC)						
Analyte	Result	Qualifier	RL	Unit	D	Prepared	Analyzed	Dil Fac
Gasoline Range Organics (GRO) -C6-C10	150		37	mg/Kg	₩	05/13/14 11:06	05/14/14 18:45	1
Surrogate	%Recovery	Qualifier	Limits			Prepared	Analyzed	Dil Fac
a,a,a-Trifluorotoluene (fid)	261	X	50 - 150			05/13/14 11:06	05/14/14 18:45	1
BFB - FID	118		50 - 150			05/13/14 11:06	05/14/14 18:45	1

Method: AK102 & 103 - Ala Analyte	•	Qualifier	RESIDUAL RAITGE C	Unit	D	Prepared	Analyzed	Dil Fac
C10-C25	6100		560	mg/Kg	\	05/12/14 12:00	05/14/14 13:45	20
Surrogate	%Recovery	Qualifier	Limits			Prepared	Analyzed	Dil Fac
1-Chlorooctadecane	58		50 - 150			05/12/14 12:00	05/14/14 13:45	20

Client Sample ID: 14-AKRE-TB Lab Sample ID: 230-108-2

Date Collected: 05/09/14 16:00 Matrix: Solid Date Received: 05/09/14 17:00 Percent Solids: 100

Analyte	Result Qualifie	er RL	MDL Unit	D	Prepared	Analyzed	Dil Fac
Dichlorodifluoromethane	ND ND	0.100	mg/kg dry	<u> </u>	05/13/14 13:08	05/13/14 15:55	1.00
Chloromethane	ND	0.0300	mg/kg dry	₩	05/13/14 13:08	05/13/14 15:55	1.00
Vinyl chloride	ND	0.00800	mg/kg dry	₽	05/13/14 13:08	05/13/14 15:55	1.00
Bromomethane	ND	0.0600	mg/kg dry	₽	05/13/14 13:08	05/13/14 15:55	1.00
Chloroethane	ND	0.100	mg/kg dry	☼	05/13/14 13:08	05/13/14 15:55	1.00

Page 7 of 29

Client Sample Results

Client: Ahtna Engineering Services LLC Project/Site: Ahtna Engineering Services

Client Sample ID: 14-AKRE-TB

Date Collected: 05/09/14 16:00

Isopropylbenzene

n-Propylbenzene

Bromobenzene

2-Chlorotoluene

4-Chlorotoluene

tert-Butylbenzene

1,1,2,2-Tetrachloroethane

1,3,5-Trimethylbenzene

1,2,3-Trichloropropane

1,2,4-Trimethylbenzene

TestAmerica Job ID: 230-108-1

Matrix: Solid

Lab Sample ID: 230-108-2

Method: EPA 8260C - Volatile (Analyte	Organic Compounds by EPA Result Qualifier	Method 8260C	(Continued) MDL Unit	D	Prepared	Analyzed	Dil Fac
Trichlorofluoromethane	ND Result Qualifier	0.0300	mg/kg dry	- -	05/13/14 13:08	05/13/14 15:55	1.00
1,1-Dichloroethene	ND	0.0300	mg/kg dry	 \$	05/13/14 13:08	05/13/14 15:55	1.00
Carbon disulfide	ND	0.100	mg/kg dry	₽	05/13/14 13:08	05/13/14 15:55	1.00
Methylene chloride	ND	0.200	mg/kg dry	₽	05/13/14 13:08	05/13/14 15:55	1.00
Acetone	ND	1.00	mg/kg dry		05/13/14 13:08	05/13/14 15:55	1.00
trans-1,2-Dichloroethene	ND	0.300	mg/kg dry	₽	05/13/14 13:08	05/13/14 15:55	1.00
Methyl tert-butyl ether	ND	0.100	mg/kg dry	₽	05/13/14 13:08	05/13/14 15:55	1.00
1,1-Dichloroethane	ND	0.100	mg/kg dry		05/13/14 13:08	05/13/14 15:55	1.00
cis-1,2-Dichloroethene	ND	0.200	mg/kg dry	₽	05/13/14 13:08	05/13/14 15:55	1.00
2,2-Dichloropropane	ND	0.100	mg/kg dry	₽	05/13/14 13:08	05/13/14 15:55	1.00
Bromochloromethane	ND	0.100	mg/kg dry	 \$	05/13/14 13:08	05/13/14 15:55	1.00
Chloroform	ND	0.100	mg/kg dry	₽	05/13/14 13:08	05/13/14 15:55	1.00
Carbon tetrachloride	ND	0.0300	mg/kg dry	₽	05/13/14 13:08	05/13/14 15:55	1.00
1,1,1-Trichloroethane	ND	0.100	mg/kg dry	· · · · · · · · · · · · · · · · · · ·	05/13/14 13:08	05/13/14 15:55	1.00
2-Butanone	ND	1.00	mg/kg dry	☼	05/13/14 13:08	05/13/14 15:55	1.00
1,1-Dichloropropene	ND	0.100	mg/kg dry	₽	05/13/14 13:08	05/13/14 15:55	1.00
Benzene	ND	0.0200	mg/kg dry	.	05/13/14 13:08	05/13/14 15:55	1.00
1,2-Dichloroethane (EDC)	ND	0.0150	mg/kg dry	₽	05/13/14 13:08	05/13/14 15:55	1.00
Trichloroethene	ND	0.0200	mg/kg dry	₽	05/13/14 13:08	05/13/14 15:55	1.00
Dibromomethane	ND	0.100	mg/kg dry	₩	05/13/14 13:08	05/13/14 15:55	1.00
1,2-Dichloropropane	ND	0.0100	mg/kg dry	☼	05/13/14 13:08	05/13/14 15:55	1.00
Bromodichloromethane	ND	0.0300	mg/kg dry	₽	05/13/14 13:08	05/13/14 15:55	1.00
cis-1,3-Dichloropropene	ND	0.0200	mg/kg dry	₽	05/13/14 13:08	05/13/14 15:55	1.00
Toluene	ND	0.100	mg/kg dry	₽	05/13/14 13:08	05/13/14 15:55	1.00
4-Methyl-2-pentanone	ND	1.00	mg/kg dry	₽	05/13/14 13:08	05/13/14 15:55	1.00
trans-1,3-Dichloropropene	ND	0.0200	mg/kg dry	φ.	05/13/14 13:08	05/13/14 15:55	1.00
Tetrachloroethene	ND	0.0200	mg/kg dry	₩	05/13/14 13:08	05/13/14 15:55	1.00
1,1,2-Trichloroethane	ND	0.0100	mg/kg dry	₩	05/13/14 13:08	05/13/14 15:55	1.00
Dibromochloromethane	ND	0.0300	mg/kg dry	₽	05/13/14 13:08	05/13/14 15:55	1.00
1,3-Dichloropropane	ND	0.0200	mg/kg dry	₩	05/13/14 13:08	05/13/14 15:55	1.00
1,2-Dibromoethane	ND	0.00500	mg/kg dry	₩	05/13/14 13:08	05/13/14 15:55	1.00
2-Hexanone	ND	1.00	mg/kg dry	₽	05/13/14 13:08	05/13/14 15:55	1.00
Ethylbenzene	ND	0.100	mg/kg dry	₽	05/13/14 13:08	05/13/14 15:55	1.00
Chlorobenzene	ND	0.100	mg/kg dry	₽	05/13/14 13:08	05/13/14 15:55	1.00
1,1,1,2-Tetrachloroethane	ND	0.100	mg/kg dry	₽	05/13/14 13:08	05/13/14 15:55	1.00
m,p-Xylene	ND	0.400	mg/kg dry	₽	05/13/14 13:08	05/13/14 15:55	1.00
o-Xylene	ND	0.200	mg/kg dry		05/13/14 13:08	05/13/14 15:55	1.00
Styrene	ND	0.100	mg/kg dry	₽	05/13/14 13:08	05/13/14 15:55	1.00
Bromoform	ND	0.100	mg/kg dry	₽	05/13/14 13:08	05/13/14 15:55	1.00
				· Li			

TestAmerica Anchorage

5/22/2014

05/13/14 15:55

05/13/14 15:55

05/13/14 15:55

05/13/14 15:55

05/13/14 15:55

05/13/14 15:55

05/13/14 15:55

05/13/14 15:55

05/13/14 15:55

05/13/14 15:55

Page 8 of 29

0.100

0.100

0.0100

0.100

0.100

0.100

0.0100

0.100

0.100

0.100

mg/kg dry

05/13/14 13:08

05/13/14 13:08

05/13/14 13:08

05/13/14 13:08

05/13/14 13:08

05/13/14 13:08

05/13/14 13:08

05/13/14 13:08

05/13/14 13:08

05/13/14 13:08

₩

ND

1.00

1.00

1.00

1.00

1.00

1.00

1.00

1.00

1.00

1.00

Client Sample Results

Client: Ahtna Engineering Services LLC Project/Site: Ahtna Engineering Services

Client Sample ID: 14-AKRE-TB

Method: AK101 - Alaska - Gasoline Range Organics (GC)

Result Qualifier

ND

Date Collected: 05/09/14 16:00

Date Received: 05/09/14 17:00

Analyte

Gasoline Range Organics (GRO)

TestAmerica Job ID: 230-108-1

Lab Sample ID: 230-108-2

Matrix: Solid

Percent Solids: 100

Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
sec-Butylbenzene	ND		0.100		mg/kg dry	<u> </u>	05/13/14 13:08	05/13/14 15:55	1.00
p-Isopropyltoluene	ND		0.100		mg/kg dry	₽	05/13/14 13:08	05/13/14 15:55	1.00
1,3-Dichlorobenzene	ND		0.100		mg/kg dry	₽	05/13/14 13:08	05/13/14 15:55	1.00
1,4-Dichlorobenzene	ND		0.100		mg/kg dry	₽	05/13/14 13:08	05/13/14 15:55	1.00
n-Butylbenzene	ND		0.100		mg/kg dry	₽	05/13/14 13:08	05/13/14 15:55	1.00
1,2-Dichlorobenzene	ND		0.100		mg/kg dry	₽	05/13/14 13:08	05/13/14 15:55	1.00
1,2-Dibromo-3-chloropropane	ND		0.500		mg/kg dry	\$	05/13/14 13:08	05/13/14 15:55	1.00
Hexachlorobutadiene	ND		0.100		mg/kg dry	₽	05/13/14 13:08	05/13/14 15:55	1.00
1,2,4-Trichlorobenzene	ND		0.100		mg/kg dry	₽	05/13/14 13:08	05/13/14 15:55	1.00
Naphthalene	ND		0.200		mg/kg dry	₽	05/13/14 13:08	05/13/14 15:55	1.00
1,2,3-Trichlorobenzene	ND		0.100		mg/kg dry	₽	05/13/14 13:08	05/13/14 15:55	1.00
Xylenes (total)	ND		0.600		mg/kg dry	₽	05/13/14 13:08	05/13/14 15:55	1.00
Surrogate	%Recovery	Qualifier	Limits				Prepared	Analyzed	Dil Fac
Dibromofluoromethane	99.9		42.4 - 163				05/13/14 13:08	05/13/14 15:55	1.00
Toluene-d8	100		45.8 - 155				05/13/14 13:08	05/13/14 15:55	1.00
4-bromofluorobenzene	104		41.5 - 162				05/13/14 13:08	05/13/14 15:55	1.00
a,a,a - Trifluorotoluene	93.2		50 - 150				05/13/14 13:08	05/13/14 15:55	1.00

-C6-C10					
Surrogate	%Recovery Qualifier	Limits	Prepared	Analyzed	Dil Fac
a,a,a-Trifluorotoluene (fid)	103	50 - 150	05/13/14 11:06	05/13/14 16:54	1
BFB - FID	116	50 ₋ 150	05/13/14 11:06	05/13/14 16:54	1

RL

3.3

Unit

mg/Kg

Prepared

05/13/14 11:06

Analyzed

05/13/14 16:54

3

5

7

9

10

12

13

Dil Fac

15

Client: Ahtna Engineering Services LLC Project/Site: Ahtna Engineering Services

Method: EPA 8260C - Volatile Organic Compounds by EPA Method 8260C

Matrix: Soil **Prep Type: Total**

		Percent Surrogate Recovery (Acceptance Limits)							
		DBFM	Toluene-d8	BFB	Trifluoroto				
Lab Sample ID	Client Sample ID	(42.4-163)	(45.8-155)	(41.5-162)	(50-150)				
14E0066-BLK1	Method Blank	94.9	99.1	101	115				

Surrogate Legend

DBFM = Dibromofluoromethane

Toluene-d8 = Toluene-d8

BFB = 4-bromofluorobenzene

a,a,a - Trifluorotoluene = a,a,a - Trifluorotoluene

Method: EPA 8260C - Volatile Organic Compounds by EPA Method 8260C

Matrix: Soil **Prep Type: Total**

_				Percent Sui	rogate Reco
		DBFM	Toluene-d8	BFB	Trifluoroto
Lab Sample ID	Client Sample ID	(42.4-163)	(45.8-155)	(41.5-162)	(60-120)
14E0066-BS1	Lab Control Sample	102	99.2	101	103
14E0066-BSD1	Lab Control Sample Dup	102	101	101	104
Surrogate Legend					
DBFM = Dibromofluoro	omethane				
Toluene-d8 = Toluene-	d8				

Method: EPA 8260C - Volatile Organic Compounds by EPA Method 8260C

Matrix: Solid **Prep Type: Total**

_				Percent Su	rrogate Reco
		DBFM	Toluene-d8	BFB	Trifluoroto
Lab Sample ID	Client Sample ID	(42.4-163)	(45.8-155)	(41.5-162)	(50-150)
230-108-1	14-AKRE-Cuttings	98.6	95.3	151	118
230-108-2	14-AKRE-TB	99.9	100	104	93.2
Surrogate Legend DBFM = Dibromofluo	promethane				

Toluene-d8 = Toluene-d8

BFB = 4-bromofluorobenzene

a,a,a - Trifluorotoluene = a,a,a - Trifluorotoluene

BFB = 4-bromofluorobenzene

a,a,a - Trifluorotoluene = a,a,a - Trifluorotoluene

Method: AK101 - Alaska - Gasoline Range Organics (GC)

Matrix: Solid Prep Type: Total/NA

_ 			
		TFT2	BFB - FID2
Lab Sample ID	Client Sample ID	(50-150)	(50-150)
230-108-1	14-AKRE-Cuttings	261 X	118
230-108-1 DU	14-AKRE-Cuttings	255 X	132
230-108-1 MS	14-AKRE-Cuttings	451 X	142
230-108-1 MSD	14-AKRE-Cuttings	422 X	131
230-108-2	14-AKRE-TB	103	116
LCS 230-471/4-A	Lab Control Sample	122	128

TestAmerica Anchorage

Page 10 of 29

5/22/2014

Client: Ahtna Engineering Services LLC Project/Site: Ahtna Engineering Services

Method: AK101 - Alaska - Gasoline Range Organics (GC) (Continued)

Matrix: Solid Prep Type: Total/NA

				Percent Surrogate Recovery (Acceptance Limits)
		TFT2	BFB - FID2	
Lab Sample ID	Client Sample ID	(50-150)	(50-150)	
LCS 230-482/4-A	Lab Control Sample	86	110	
LCSD 230-471/5-A	Lab Control Sample Dup	131	125	
LCSD 230-482/5-A	Lab Control Sample Dup	114	108	
MB 230-471/1-A	Method Blank	108	105	
MB 230-482/1-A	Method Blank	105	107	
Surrogate Legend				
TFT = a,a,a-Trifluorotolu	uene (fid)			
BFB - FID = BFB - FID				

Method: AK102 & 103 - Alaska - Diesel Range Organics & Residual Range Organics (GC)

Matrix: Solid Prep Type: Total/NA

			Percent Surrogate Recovery (Acceptance Limits)
		1COD	
Lab Sample ID	Client Sample ID	(50-150)	
230-108-1	14-AKRE-Cuttings	58	
230-109-A-1-B DU	Duplicate	75	
230-109-A-1-C MS	Matrix Spike	82	
230-109-A-1-D MSD	Matrix Spike Duplicate	80	
LCS 230-461/2-A	Lab Control Sample	73	
LCSD 230-461/3-A	Lab Control Sample Dup	75	
MB 230-461/1-A	Method Blank	71	

Surrogate Legend

1COD = 1-Chlorooctadecane

TestAmerica Anchorage

Client: Ahtna Engineering Services LLC Project/Site: Ahtna Engineering Services

Method: EPA 8260C - Volatile Organic Compounds by EPA Method 8260C

Lab Sample ID: 14E0066-BLK1

Matrix: Soil

Analysis Batch: 14E0066

Client Sample ID: Method Blank **Prep Type: Total**

Prep Batch: 14E0066_P

Analysis Batch: 14E0066	Blank	Blank				•	Prep Batch: 14E	
Analyte	Result	Qualifier	RL	MDL Unit	D	Prepared	Analyzed	Dil Fac
Dichlorodifluoromethane	ND		0.100	mg/kg wet		05/13/14 13:08	05/13/14 13:19	1.00
Chloromethane	ND		0.0300	mg/kg wet		05/13/14 13:08	05/13/14 13:19	1.00
Vinyl chloride	ND		0.00800	mg/kg wet		05/13/14 13:08	05/13/14 13:19	1.00
Bromomethane	ND		0.0600	mg/kg wet		05/13/14 13:08	05/13/14 13:19	1.00
Chloroethane	ND		0.100	mg/kg wet		05/13/14 13:08	05/13/14 13:19	1.00
Trichlorofluoromethane	ND		0.0300	mg/kg wet		05/13/14 13:08	05/13/14 13:19	1.00
1,1-Dichloroethene	ND		0.0300	mg/kg wet		05/13/14 13:08	05/13/14 13:19	1.00
Carbon disulfide	ND		0.100	mg/kg wet		05/13/14 13:08	05/13/14 13:19	1.00
Methylene chloride	ND		0.200	mg/kg wet		05/13/14 13:08	05/13/14 13:19	1.00
Acetone	ND		1.00	mg/kg wet		05/13/14 13:08	05/13/14 13:19	1.00
trans-1,2-Dichloroethene	ND		0.300	mg/kg wet		05/13/14 13:08	05/13/14 13:19	1.00
Methyl tert-butyl ether	ND		0.100	mg/kg wet		05/13/14 13:08	05/13/14 13:19	1.00
1,1-Dichloroethane	ND		0.100	mg/kg wet		05/13/14 13:08	05/13/14 13:19	1.00
cis-1,2-Dichloroethene	ND		0.200	mg/kg wet		05/13/14 13:08	05/13/14 13:19	1.00
2,2-Dichloropropane	ND		0.100	mg/kg wet		05/13/14 13:08	05/13/14 13:19	1.00
Bromochloromethane	ND		0.100	mg/kg wet		05/13/14 13:08	05/13/14 13:19	1.00
Chloroform	ND		0.100	mg/kg wet		05/13/14 13:08	05/13/14 13:19	1.00
Carbon tetrachloride	ND		0.0300	mg/kg wet		05/13/14 13:08	05/13/14 13:19	1.00
1,1,1-Trichloroethane	ND		0.100	mg/kg wet		05/13/14 13:08	05/13/14 13:19	1.00
2-Butanone	ND		1.00	mg/kg wet		05/13/14 13:08	05/13/14 13:19	1.00
	ND		0.100			05/13/14 13:08	05/13/14 13:19	1.00
1,1-Dichloropropene				mg/kg wet				
Benzene	ND		0.0200	mg/kg wet		05/13/14 13:08	05/13/14 13:19	1.00
1,2-Dichloroethane (EDC)	ND		0.0150	mg/kg wet		05/13/14 13:08	05/13/14 13:19	1.00
Trichloroethene	ND		0.0200	mg/kg wet		05/13/14 13:08	05/13/14 13:19	1.00
Dibromomethane	ND		0.100	mg/kg wet		05/13/14 13:08	05/13/14 13:19	1.00
1,2-Dichloropropane	ND		0.0100	mg/kg wet		05/13/14 13:08	05/13/14 13:19	1.00
Bromodichloromethane	ND		0.0300	mg/kg wet		05/13/14 13:08	05/13/14 13:19	1.00
cis-1,3-Dichloropropene	ND		0.0200	mg/kg wet		05/13/14 13:08	05/13/14 13:19	1.00
Toluene	ND		0.100	mg/kg wet		05/13/14 13:08	05/13/14 13:19	1.00
4-Methyl-2-pentanone	ND		1.00	mg/kg wet		05/13/14 13:08	05/13/14 13:19	1.00
trans-1,3-Dichloropropene	ND		0.0200	mg/kg wet		05/13/14 13:08	05/13/14 13:19	1.00
Tetrachloroethene	ND		0.0200	mg/kg wet		05/13/14 13:08	05/13/14 13:19	1.00
1,1,2-Trichloroethane	ND		0.0100	mg/kg wet		05/13/14 13:08	05/13/14 13:19	1.00
Dibromochloromethane	ND		0.0300	mg/kg wet		05/13/14 13:08	05/13/14 13:19	1.00
1,3-Dichloropropane	ND		0.0200	mg/kg wet		05/13/14 13:08	05/13/14 13:19	1.00
1,2-Dibromoethane	ND		0.00500	mg/kg wet		05/13/14 13:08	05/13/14 13:19	1.00
2-Hexanone	ND		1.00	mg/kg wet		05/13/14 13:08	05/13/14 13:19	1.00
Ethylbenzene	ND		0.100	mg/kg wet		05/13/14 13:08	05/13/14 13:19	1.00
Chlorobenzene	ND		0.100	mg/kg wet		05/13/14 13:08	05/13/14 13:19	1.00
1,1,1,2-Tetrachloroethane	ND		0.100	mg/kg wet		05/13/14 13:08	05/13/14 13:19	1.00
m,p-Xylene	ND		0.400	mg/kg wet		05/13/14 13:08	05/13/14 13:19	1.00
o-Xylene	ND		0.200	mg/kg wet		05/13/14 13:08	05/13/14 13:19	1.00
Styrene	ND		0.100	mg/kg wet		05/13/14 13:08	05/13/14 13:19	1.00
Bromoform	ND		0.100	mg/kg wet		05/13/14 13:08	05/13/14 13:19	1.00
Isopropylbenzene	ND		0.100	mg/kg wet		05/13/14 13:08	05/13/14 13:19	1.00
n-Propylbenzene	ND		0.100	mg/kg wet		05/13/14 13:08	05/13/14 13:19	1.00
1,1,2,2-Tetrachloroethane	ND		0.0100	mg/kg wet		05/13/14 13:08	05/13/14 13:19	1.00
Bromobenzene	ND		0.100	mg/kg wet		05/13/14 13:08	05/13/14 13:19	1.00

TestAmerica Anchorage

Page 12 of 29

Client: Ahtna Engineering Services LLC Project/Site: Ahtna Engineering Services

Method: EPA 8260C - Volatile Organic Compounds by EPA Method 8260C (Continued)

Lab Sample ID: 14E0066-BLK1

Matrix: Soil

Client Sample ID: Method Blank
Prep Type: Total

Matrix: Soil Prep Type: Total Analysis Batch: 14E0066 Prep Batch: 14E0066_P

	Blank	Blank							
Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
1,3,5-Trimethylbenzene	ND		0.100		mg/kg wet		05/13/14 13:08	05/13/14 13:19	1.00
2-Chlorotoluene	ND		0.100		mg/kg wet		05/13/14 13:08	05/13/14 13:19	1.00
1,2,3-Trichloropropane	ND		0.0100		mg/kg wet		05/13/14 13:08	05/13/14 13:19	1.00
4-Chlorotoluene	ND		0.100		mg/kg wet		05/13/14 13:08	05/13/14 13:19	1.00
tert-Butylbenzene	ND		0.100		mg/kg wet		05/13/14 13:08	05/13/14 13:19	1.00
1,2,4-Trimethylbenzene	ND		0.100		mg/kg wet		05/13/14 13:08	05/13/14 13:19	1.00
sec-Butylbenzene	ND		0.100		mg/kg wet		05/13/14 13:08	05/13/14 13:19	1.00
p-Isopropyltoluene	ND		0.100		mg/kg wet		05/13/14 13:08	05/13/14 13:19	1.00
1,3-Dichlorobenzene	ND		0.100		mg/kg wet		05/13/14 13:08	05/13/14 13:19	1.00
1,4-Dichlorobenzene	ND		0.100		mg/kg wet		05/13/14 13:08	05/13/14 13:19	1.00
n-Butylbenzene	ND		0.100		mg/kg wet		05/13/14 13:08	05/13/14 13:19	1.00
1,2-Dichlorobenzene	ND		0.100		mg/kg wet		05/13/14 13:08	05/13/14 13:19	1.00
1,2-Dibromo-3-chloropropane	ND		0.500		mg/kg wet		05/13/14 13:08	05/13/14 13:19	1.00
Hexachlorobutadiene	ND		0.100		mg/kg wet		05/13/14 13:08	05/13/14 13:19	1.00
1,2,4-Trichlorobenzene	ND		0.100		mg/kg wet		05/13/14 13:08	05/13/14 13:19	1.00
Naphthalene	ND		0.200		mg/kg wet		05/13/14 13:08	05/13/14 13:19	1.00
1,2,3-Trichlorobenzene	ND		0.100		mg/kg wet		05/13/14 13:08	05/13/14 13:19	1.00
Xylenes (total)	ND		0.600		mg/kg wet		05/13/14 13:08	05/13/14 13:19	1.00
	Blank	Blank							
•	2/5	o							57.5

Surrogate %Recovery Qualifier Limits Prepared Analyzed Dil Fac Dibromofluoromethane 94.9 42.4 - 163 05/13/14 13:08 05/13/14 13:19 1.00 Toluene-d8 99.1 45.8 - 155 05/13/14 13:08 05/13/14 13:19 1.00 4-bromofluorobenzene 101 41.5 - 162 05/13/14 13:08 05/13/14 13:19 1.00 a,a,a - Trifluorotoluene 115 50 - 150 05/13/14 13:08 05/13/14 13:19

Lab Sample ID: 14E0066-BS1 Client Sample ID: Lab Control Sample

Matrix: Soil Prep Type: Total Analysis Batch: 14E0066 Prep Batch: 14E0066_P

Analysis Batch: 14E0066	Spike	LCS	LCS				Prep Batch: 14E0066_P %Rec.
Analyte	Added	Result	Qualifier	Unit	D	%Rec	Limits
Dichlorodifluoromethane	0.500	0.454		mg/kg wet	_	90.7	60 - 140
Chloromethane	0.500	0.474		mg/kg wet		94.7	60 - 140
Vinyl chloride	0.500	0.532		mg/kg wet		106	60 - 140
Bromomethane	0.500	0.468		mg/kg wet		93.6	60 - 140
Chloroethane	0.500	0.464		mg/kg wet		92.9	60 - 140
Trichlorofluoromethane	0.500	0.499		mg/kg wet		99.8	60 - 140
1,1-Dichloroethene	0.500	0.494		mg/kg wet		98.7	76 ₋ 187
Carbon disulfide	0.500	0.484		mg/kg wet		96.9	60 - 140
Methylene chloride	0.500	0.428		mg/kg wet		85.6	60 - 140
Acetone	2.50	1.92		mg/kg wet		76.8	60 - 140
trans-1,2-Dichloroethene	0.500	0.486		mg/kg wet		97.3	60 - 140
Methyl tert-butyl ether	0.500	0.454		mg/kg wet		90.8	79 ₋ 127
1,1-Dichloroethane	0.500	0.497		mg/kg wet		99.4	60 - 140
cis-1,2-Dichloroethene	0.500	0.499		mg/kg wet		99.8	60 - 140
2,2-Dichloropropane	0.500	0.490		mg/kg wet		97.9	60 - 140
Bromochloromethane	0.500	0.519		mg/kg wet		104	60 - 140
Chloroform	0.500	0.527		mg/kg wet		105	60 - 140
Carbon tetrachloride	0.500	0.470		mg/kg wet		94.1	60 - 140

TestAmerica Anchorage

Page 13 of 29

5/22/2014

Δ

5

9

11

12

14

QC Sample Results

Client: Ahtna Engineering Services LLC Project/Site: Ahtna Engineering Services TestAmerica Job ID: 230-108-1

Prep Type: Total

Client Sample ID: Lab Control Sample

Method: EPA 8260C - Volatile Organic Compounds by EPA Method 8260C (Continued)

Lab Sample	D: 14E0066-BS1
Matrix: Soil	

Analysis Batch: 14E0066	Spike	LCS	LCS				Prep Batch: 14E0066_ %Rec.
Analyte	Added	Result	Qualifier	Unit	D	%Rec	Limits
1,1,1-Trichloroethane	0.500	0.504		mg/kg wet		101	60 - 140
2-Butanone	2.50	2.13		mg/kg wet		85.1	60 - 140
1,1-Dichloropropene	0.500	0.492		mg/kg wet		98.3	60 - 140
Benzene	0.500	0.502		mg/kg wet		100	75.9 - 123
1,2-Dichloroethane (EDC)	0.500	0.510		mg/kg wet		102	60 - 140
Trichloroethene	0.500	0.520		mg/kg wet		104	82.7 - 120
Dibromomethane	0.500	0.480		mg/kg wet		96.1	60 - 140
1,2-Dichloropropane	0.500	0.492		mg/kg wet		98.5	60 - 140
Bromodichloromethane	0.500	0.536		mg/kg wet		107	60 - 140
cis-1,3-Dichloropropene	0.500	0.486		mg/kg wet		97.2	60 - 140
Toluene	0.500	0.486		mg/kg wet		97.1	77.3 - 126
4-Methyl-2-pentanone	2.50	2.20		mg/kg wet		88.1	60 - 140
trans-1,3-Dichloropropene	0.500	0.431		mg/kg wet		86.2	60 - 140
Tetrachloroethene	0.500	0.480		mg/kg wet		95.9	75 ₋ 130
1,1,2-Trichloroethane	0.500	0.482		mg/kg wet		96.4	60 - 140
Dibromochloromethane	0.500	0.512		mg/kg wet		102	60 - 140
1,3-Dichloropropane	0.500	0.506		mg/kg wet		101	60 - 140
1,2-Dibromoethane	0.500	0.466		mg/kg wet		93.1	60 - 140
2-Hexanone	2.50	2.19		mg/kg wet		87.6	60 - 140
Ethylbenzene	0.500	0.460		mg/kg wet		92.0	80.7 - 120
Chlorobenzene	0.500	0.491		mg/kg wet		98.2	80 - 120
1,1,1,2-Tetrachloroethane	0.500	0.520		mg/kg wet		104	60 - 140
m,p-Xylene	0.500	0.480		mg/kg wet		96.1	86.1 - 120
o-Xylene	0.500	0.486		mg/kg wet		97.2	85.3 - 120
Styrene	0.500	0.468		mg/kg wet		93.6	60 - 140
Bromoform	0.500	0.470		mg/kg wet		94.0	60 - 140
Isopropylbenzene	0.500	0.482		mg/kg wet		96.3	60 - 140
n-Propylbenzene	0.500	0.481		mg/kg wet		96.2	60 - 140
1,1,2,2-Tetrachloroethane	0.500	0.486		mg/kg wet		97.1	60 - 140
Bromobenzene	0.500	0.486		mg/kg wet		97.3	60 - 140
1,3,5-Trimethylbenzene	0.500	0.483		mg/kg wet		96.6	60 - 140
2-Chlorotoluene	0.500	0.478		mg/kg wet		95.7	60 - 140
1,2,3-Trichloropropane	0.500	0.479		mg/kg wet		95.8	60 - 140
4-Chlorotoluene	0.500	0.512		mg/kg wet		102	60 - 140
tert-Butylbenzene	0.500	0.516		mg/kg wet		103	60 - 140
1,2,4-Trimethylbenzene	0.500	0.475		mg/kg wet		95.0	60 - 140
sec-Butylbenzene	0.500	0.470		mg/kg wet		94.0	60 - 140
p-Isopropyltoluene	0.500	0.460		mg/kg wet		92.0	60 - 140
1,3-Dichlorobenzene	0.500	0.484		mg/kg wet		96.8	60 - 140
1,4-Dichlorobenzene	0.500	0.466		mg/kg wet		93.3	60 - 140
n-Butylbenzene	0.500	0.474		mg/kg wet		94.7	60 - 140
1,2-Dichlorobenzene	0.500	0.486		mg/kg wet		97.3	60 - 140
1,2-Dibromo-3-chloropropane	0.500	0.490		mg/kg wet		98.1	60 - 140
Hexachlorobutadiene	0.500	0.479		mg/kg wet		95.8	60 - 140
1,2,4-Trichlorobenzene	0.500	0.464		mg/kg wet		92.7	60 - 140
Naphthalene	0.500	0.456		mg/kg wet		91.1	58.8 - 130
1,2,3-Trichlorobenzene	0.500	0.472		mg/kg wet		94.4	60 - 140
1,=,= 1.75.110.1000.120.10	0.000	V. 11 Z				J 1. T	20 - 1.0

Client: Ahtna Engineering Services LLC Project/Site: Ahtna Engineering Services

Method: EPA 8260C - Volatile Organic Compounds by EPA Method 8260C (Continued)

Lab Sample ID: 14E0066-BS1

Lab Sample ID: 14E0066-BSD1

Matrix: Soil

Analysis Batch: 14E0066

Client Sample ID: Lab Control Sample
Prep Type: Total

Prep Batch: 14E0066 P

LCS LCS

Surrogate	%Recovery	Qualifier	Limits
Dibromofluoromethane	102		42.4 - 163
Toluene-d8	99.2		45.8 - 155
4-bromofluorobenzene	101		41.5 - 162
a,a,a - Trifluorotoluene	103		60 - 120

Client Sample ID: Lab Control Sample Dup

Matrix: Soil

Prep Type: Total
Prep Batch: 14E0066 P

Analysis Batch: 14E0066 Spike LCS Dup LCS Dup %Rec. **RPD** Result Qualifier Added RPD Limit Analyte Unit %Rec Limits 0.435 25 Dichlorodifluoromethane 0.500 mg/kg wet 87.0 60 - 140 4.16 Chloromethane 0.500 0.470 mg/kg wet 93.9 60 - 140 0.848 25 Vinyl chloride 0.500 0.542 108 60 - 140 1 68 25 mg/kg wet Bromomethane 0.500 0.442 mg/kg wet 88.5 60 - 140 5.60 25 0.500 0.498 Chloroethane 99.5 60 - 1406.86 25 mg/kg wet mg/kg wet Trichlorofluoromethane 0.500 0.497 99.4 60 - 140 0.402 25 1,1-Dichloroethene 0.500 0.485 97.0 76 - 187 1.74 25 mg/kg wet Carbon disulfide 0.500 0.478 mg/kg wet 95.7 60 - 140 1.25 25 Methylene chloride 0.500 0.430 mg/kg wet 85.9 60 - 140 0.350 25 2 50 1.77 70.9 60 - 140 8.04 25 Acetone mg/kg wet 0.486 trans-1,2-Dichloroethene 0.500 mg/kg wet 97.1 60 - 1400.206 25 0.500 0 444 88 7 79 _ 127 2 34 25 Methyl tert-butyl ether mg/kg wet 0.500 0.491 98.2 60 - 140 25 1,1-Dichloroethane mg/kg wet 1.21 0.500 0.508 102 60 - 14025 cis-1,2-Dichloroethene mg/kg wet 1.79 2,2-Dichloropropane 0.500 0.510 mg/kg wet 102 60 - 140 4.20 25 Bromochloromethane 0.500 0.502 mg/kg wet 100 60 - 140 3.23 25 Chloroform 0.500 0.518 mg/kg wet 104 60 - 140 1.72 25 0.500 0.457 91.4 60 - 140 2.91 25 Carbon tetrachloride mg/kg wet 1,1,1-Trichloroethane 0.500 0.516 mg/kg wet 103 60 - 140 2.45 25 2.50 1.94 77.8 60 - 140 9.04 25 2-Butanone mg/kg wet 0.500 1,1-Dichloropropene 0.486 mg/kg wet 97.3 60 - 1401.02 25 0.500 Benzene 0.500 mg/kg wet 99.9 75.9 - 123 0.499 25 1.2-Dichloroethane (EDC) 0.500 0.518 mg/kg wet 104 60 - 140 1 65 25 Trichloroethene 0.500 0.513 mg/kg wet 103 82.7 - 120 1.36 25 Dibromomethane 0.500 0.476 95.1 60 - 14025 mg/kg wet 1.05 1,2-Dichloropropane 0.500 0.488 97.6 60 - 140 0.918 25 mg/kg wet 101 Bromodichloromethane 0.500 0.506 60 - 1405.57 25 mg/kg wet cis-1,3-Dichloropropene 0.500 0.480 95.9 60 - 140 1.35 25 mg/kg wet 0.500 0.468 93.6 77.3 - 1263.67 25 Toluene mg/kg wet 4-Methyl-2-pentanone 2.50 2.05 mg/kg wet 81.8 60 - 140 7.37 25 trans-1,3-Dichloropropene 0.500 0.427 85.4 60 - 140 0.932 25 mg/kg wet 0.500 0.469 75 - 130 Tetrachloroethene mg/kg wet 93.8 2.21 25 1,1,2-Trichloroethane 0.500 0.472 94.4 60 - 140 2.10 25 mg/kg wet 0.500 0.492 60 - 140 Dibromochloromethane mg/kg wet 98.3 3.99 25 1,3-Dichloropropane 0.500 0.501 100 60 - 140 1.09 25 mg/kg wet 0.500 0.470 1.2-Dibromoethane mg/kg wet 94 0 60 - 1400.962 25 2-Hexanone 2.50 2.01 mg/kg wet 80.4 60 - 140 8.67 25 Ethylbenzene 0.500 0.457 91.4 80.7 - 120 0.654 25 mg/kg wet

TestAmerica Anchorage

3

4

6

ŏ

9

11

3

Client: Ahtna Engineering Services LLC Project/Site: Ahtna Engineering Services

Method: EPA 8260C - Volatile Organic Compounds by EPA Method 8260C (Continued)

Lab Sample ID: 14E0066-BSD1 Client Sample ID: Lab Control S									e Dup
Matrix: Soil							Pr	ep Type:	Total
Analysis Batch: 14E0066							Prep Bate	ch: 14E0	066_P
	Spike	LCS Dup	LCS Dup				%Rec.		RPD
Analyte	Added		Qualifier	Unit	D	%Rec	Limits	RPD	Limit
Chlorobenzene	0.500	0.481		mg/kg wet		96.2	80 - 120	2.06	25
1,1,1,2-Tetrachloroethane	0.500	0.508		mg/kg wet		102	60 - 140	2.24	25
m,p-Xylene	0.500	0.470		mg/kg wet		93.9	86.1 _ 120	2.32	25
o-Xylene	0.500	0.476		mg/kg wet		95.3	85.3 - 120	1.97	25
Styrene	0.500	0.469		mg/kg wet		93.8	60 - 140	0.213	25
Bromoform	0.500	0.432		mg/kg wet		86.3	60 - 140	8.54	25
Isopropylbenzene	0.500	0.459		mg/kg wet		91.8	60 - 140	4.78	25
n-Propylbenzene	0.500	0.480		mg/kg wet		95.9	60 - 140	0.312	25
1,1,2,2-Tetrachloroethane	0.500	0.467		mg/kg wet		93.4	60 - 140	3.88	25
Bromobenzene	0.500	0.472		mg/kg wet		94.4	60 - 140	3.03	25
1,3,5-Trimethylbenzene	0.500	0.478		mg/kg wet		95.7	60 - 140	0.936	25
2-Chlorotoluene	0.500	0.476		mg/kg wet		95.2	60 - 140	0.524	25
1,2,3-Trichloropropane	0.500	0.463		mg/kg wet		92.6	60 - 140	3.40	25
4-Chlorotoluene	0.500	0.498		mg/kg wet		99.5	60 - 140	2.97	25
tert-Butylbenzene	0.500	0.502		mg/kg wet		100	60 - 140	2.75	25
1,2,4-Trimethylbenzene	0.500	0.470		mg/kg wet		94.1	60 - 140	0.952	25
sec-Butylbenzene	0.500	0.467		mg/kg wet		93.4	60 - 140	0.640	25
p-Isopropyltoluene	0.500	0.444		mg/kg wet		88.8	60 - 140	3.54	25
1,3-Dichlorobenzene	0.500	0.476		mg/kg wet		95.1	60 - 140	1.77	25
1,4-Dichlorobenzene	0.500	0.470		mg/kg wet		93.9	60 - 140	0.641	25
n-Butylbenzene	0.500	0.468		mg/kg wet		93.7	60 - 140	1.06	25
1,2-Dichlorobenzene	0.500	0.481		mg/kg wet		96.2	60 - 140	1.14	25
1,2-Dibromo-3-chloropropane	0.500	0.388		mg/kg wet		77.5	60 - 140	23.5	25
Hexachlorobutadiene	0.500	0.468		mg/kg wet		93.6	60 - 140	2.32	25
1,2,4-Trichlorobenzene	0.500	0.455		mg/kg wet		91.0	60 - 140	1.85	25
Naphthalene	0.500	0.436		mg/kg wet		87.2	58.8 - 130	4.37	25
1,2,3-Trichlorobenzene	0.500	0.444		mg/kg wet		88.9	60 - 140	6.00	25

	LCS Dup	LCS Dup	
Surrogate	%Recovery	Qualifier	Limits
Dibromofluoromethane	102		42.4 - 163
Toluene-d8	101		45.8 - 155
4-bromofluorobenzene	101		41.5 - 162
a a a Trifluorotoluene	104		60 120

Method: AK101 - Alaska - Gasoline Range Organics (GC)

105

BFB - FID

Lab Sample ID: MB 230-471/1-A				Client Sample ID: Method Blank					
Matrix: Solid							Prep Type: T	otal/NA	
Analysis Batch: 475							Prep Ba	tch: 471	
	MB	MB							
Analyte	Result	Qualifier	RL	Unit	D	Prepared	Analyzed	Dil Fac	
Gasoline Range Organics (GRO) -C6-C10	ND		3.3	mg/Kg		05/13/14 11:06	05/13/14 17:22	1	
	MB	МВ							
Surrogate	%Recovery	Qualifier	Limits			Prepared	Analyzed	Dil Fac	
a,a,a-Trifluorotoluene (fid)	108		50 - 150			05/13/14 11:06	05/13/14 17:22	1	

TestAmerica Anchorage

Page 16 of 29

50 - 150

5/22/2014

Client: Ahtna Engineering Services LLC Project/Site: Ahtna Engineering Services

Surrogate

Matrix: Solid

Method: AK101 - Alaska - Gasoline Range Organics (GC) (Continued)

LCSD LCSD

%Recovery Qualifier

Lab Sample ID: LCS 230-471 Matrix: Solid Analysis Batch: 475	/ 4-A					•	Client	Sample	Prep T	ontrol Sample Type: Total/NA ep Batch: 471
			Spike	LCS	LCS				%Rec.	
Analyte			Added	Result	Qualifier	Unit	D	%Rec	Limits	
Gasoline Range Organics (GRO) -C6-C10			20.0	19.0		mg/Kg		95	60 - 120	
	LCS	LCS								
Surrogate	%Recovery	Qualifier	Limits							
a,a,a-Trifluorotoluene (fid)	122		50 _ 150							
BFB - FID	128		50 - 150							
Lab Sample ID: LCSD 230-47	′1/5-A					Clien	t Sam	ple ID:	Lab Contro	I Sample Dup

- 1	Las cample is: Loop 200-47 ino-A				Olici	it Ouii	ipic ib.		i Gairipi	CDup
	Matrix: Solid							Prep T	ype: To	tal/NA
	Analysis Batch: 475							Pr	ep Batc	h: 471
		Spike	LCSD	LCSD				%Rec.		RPD
	Analyte	Added	Result	Qualifier	Unit	D	%Rec	Limits	RPD	Limit
	Gasoline Range Organics (GRO) -C6-C10	20.0	20.1		mg/Kg		101	60 - 120	6	20

Lab Sample ID: 230-108-1 MS			Client Sample ID: 14-AKRE-Cuttings
BFB - FID	125	50 - 150	
a,a,a-Trifluorotoluene (fid)	131	50 - 150	

Limits

Analysis Batch: 486

Sample Sample Spike MS MS

Analyte Result Qualifier Added Result Qualifier Unit D %Rec Limits

Analyte	Result	Qualifier	Added	Result	Qualifier	Unit	D	%Rec	Limits	
Gasoline Range Organics (GRO)	150		185	319		mg/Kg	₩	89	70 - 130	
-C6-C10										
	MS	MS								

Surrogate	%Recovery	Qualifier	Limits
a,a,a-Trifluorotoluene (fid)	451	X	50 - 150
BFB - FID	142		50 - 150

Lab Sample ID: 230-108-1 MSI	ס						Clie	nt Samp	ole ID: 14-A	KRE-Cu	ttings
Matrix: Solid									Prep T	ype: To	tal/NA
Analysis Batch: 486									Pr	ep Batc	h: 471
	Sample	Sample	Spike	MSD	MSD				%Rec.		RPD
Analyte	Result	Qualifier	Added	Result	Qualifier	Unit	D	%Rec	Limits	RPD	Limit
	450		105						= 0 100		

Analyte	Result	Qualifier	Added	Result	Qualifier	Unit	U	%Rec	Limits	KPD	Limit
Gasoline Range Organics (GRO)	150		185	297		mg/Kg	₩	78	70 - 130	7	20
-C6-C10											
	MSD	MSD									

Surrogate	%Recovery	Qualifier	Limits
a,a,a-Trifluorotoluene (fid)	422	X	50 - 150
BFB - FID	131		50 - 150

TestAmerica Anchorage

Prep Type: Total/NA

Client: Ahtna Engineering Services LLC Project/Site: Ahtna Engineering Services

Method: AK101 - Alaska - Gasoline Range Organics (GC) (Continued)

Lab Sample ID: 230-108-1 DU Matrix: Solid Analysis Batch: 486							Client Sam	ple ID: 14-AKRE-Cu Prep Type: To Prep Batc	tal/NA
	Sample	Sample		DU	DU				RPD
Analyte	Result	Qualifier		Result	Qualifier	Unit	D	RPD	Limit
Gasoline Range Organics (GRO) -C6-C10	150			139		mg/Kg		10	
	DU	DU							
Surrogate	%Recovery	Qualifier	Limits						
a,a,a-Trifluorotoluene (fid)	255	X	50 - 150						
BFB - FID	132		50 - 150						

Lab Sample ID: MB 230-482/1-A Client Sample ID: Method Blank

Matrix: Solid Prep Type: Total/NA
Analysis Batch: 486 Prep Batch: 482

	MB MB						
Analyte	Result Qualifier	RL	Unit	D	Prepared	Analyzed	Dil Fac
Gasoline Range Organics (GRO) -C6-C10	ND	3.3	mg/Kg	<u></u>	05/14/14 11:33	05/14/14 15:50	1
	MB MB						

Surrogate	%Recovery Qualifier	Limits	Prepared	Analyzed	Dil Fac
a,a,a-Trifluorotoluene (fid)	105	50 - 150	05/14/14 11:33	05/14/14 15:50	1
BFB - FID	107	50 - 150	05/14/14 11:33	05/14/14 15:50	1

Lab Sample ID: LCS 230-482/4-A

Matrix: Solid

Analysis Batch: 486

Client Sample ID: Lab Control Sample

Prep Type: Total/NA

Prep Batch: 482

AnalyteAddedResultQualifierUnitD%Rec.Gasoline Range Organics (GRO)20.016.2mg/Kg8160 - 120

	LCS	LCS	
Surrogate	%Recovery	Qualifier	Limits
a,a,a-Trifluorotoluene (fid)	86		50 - 150
BFB - FID	110		50 ₋ 150

108

-C6-C10

BFB - FID

Lab Sample ID: LCSD 230-482/5-A				Clien	t Sam	ple ID:	Lab Contro	ol Sampl	e Dup
Matrix: Solid							Prep T	ype: To	tal/NA
Analysis Batch: 486							Pr	ep Batc	h: 482
	Spike	LCSD	LCSD				%Rec.		RPD
Analyte	Added	Result	Qualifier	Unit	D	%Rec	Limits	RPD	Limit
Gasoline Range Organics (GRO)	20.0	19.7		mg/Kg		99	60 - 120	20	20

-C6-C10	,		
	LCSD	LCSD	
Surrogate	%Recovery	Qualifier	Limits
a.a.a-Trifluorotoluene (fid)	114		50 - 150

50 - 150

TestAmerica Anchorage

Client: Ahtna Engineering Services LLC Project/Site: Ahtna Engineering Services

Surrogate

1-Chlorooctadecane

1D. 230-100-1

Method: AK102 & 103 - Alaska - Diesel Range Organics & Residual Range Organics (GC)

Lab Sample ID: MB 230-461/1-A						Client Sa	mple ID: Metho	d Blank
Matrix: Solid							Prep Type: T	otal/NA
Analysis Batch: 465							Prep Bat	tch: 461
	MB	MB						
Analyte	Result	Qualifier	RL	Unit	D	Prepared	Analyzed	Dil Fac
C10-C25	ND		20	mg/Kg		05/12/14 12:00	05/13/14 16:56	1
	МВ	MB						
Surrogate	%Recovery	Qualifier	Limits			Prepared	Analyzed	Dil Fac
1-Chlorooctadecane	71		50 - 150			05/12/14 12:00	05/13/14 16:56	1

1-Chlorooctadecane		71	50 - 150				05/1	12/14 12:00	05/13/14 16:56	1
Lab Sample ID: LCS 230-461/2-A							Client	t Sample	ID: Lab Control	Sample
Matrix: Solid									Prep Type: 1	Γotal/NA
Analysis Batch: 477									Prep Ba	tch: 461
			Spike	LCS	LCS				%Rec.	
Analyte			Added	Result	Qualifier	Unit	D	%Rec	Limits	
C10-C25			127	99.6	-	mg/Kg		79	75 _ 125	
	LCS	LCS								
Surrogate	%Recovery	Qualifier	Limits							
1-Chlorooctadecane	73		50 - 150							

Lab Sample ID: LCSD 230-461/3-A				Clier	it Sam	ibie in: i	Lab Contro	ı Sampı	e Dup
Matrix: Solid							Prep T	ype: Tot	al/NA
Analysis Batch: 465							Pr	ep Batcl	h: 461
	Spike	LCSD	LCSD				%Rec.		RPD
Analyte	Added	Result	Qualifier	Unit	D	%Rec	Limits	RPD	Limit
C10-C25	127	98.1		mg/Kg		77	75 - 125	4	20
LCSD LC	SD								

Limits

50 - 150

%Recovery Qualifier

75

Lab Sample ID: 230-109-A-1-C M Matrix: Solid Analysis Batch: 464	S							Client	Prep Ty	Matrix Spike /pe: Total/NA pp Batch: 461
•	Sample	Sample	Spike	MS	MS				%Rec.	•
Analyte	Result	Qualifier	Added	Result	Qualifier	Unit	D	%Rec	Limits	
C10-C25	120		143	243		mg/Kg	\	83	75 - 125	
	MS	MS								
Surrogate	%Recovery	Qualifier	Limits							
1-Chlorooctadecane	82		50 - 150							

Lab Sample ID: 230-109-A-1-D MSD Matrix: Solid							lient Sa	ample IC	: Matrix Sp Prep T	oike Dup Type: Tot	
Analysis Batch: 464									Pr	ep Batc	h: 461
•	Sample	Sample	Spike	MSD	MSD				%Rec.		RPD
Analyte	Result	Qualifier	Added	Result	Qualifier	Unit	D	%Rec	Limits	RPD	Limit
C10-C25	120		143	237		mg/Kg	₩	79	75 - 125	3	20
	MSD	MSD									
Surrogate	%Recovery	Qualifier	Limits								
1-Chlorooctadecane	80		50 - 150								

TestAmerica Anchorage

QC Sample Results

Limits

50 - 150

DU DU

122

Result Qualifier

Unit

mg/Kg

₩

Client: Ahtna Engineering Services LLC Project/Site: Ahtna Engineering Services

Lab Sample ID: 230-109-A-1-B DU

Matrix: Solid

Analyte

C10-C25

Surrogate

1-Chlorooctadecane

Analysis Batch: 464

TestAmerica Job ID: 230-108-1

Method: AK102 & 103 - Alaska - Diesel Range Organics & Residual Range Organics (GC) (Continued)

Sample Sample

DU DU

%Recovery Qualifier

75

120

Result Qualifier

Client Sample ID: Duplicate

Prep Type: Total/NA

Prep Batch: 461

RPD

RPD Limit

QC Association Summary

Client: Ahtna Engineering Services LLC Project/Site: Ahtna Engineering Services TestAmerica Job ID: 230-108-1

GCMS Volatiles

Analysis Batch: 14E0066

Lab Sample ID	Client Sample ID	Prep Type	Matrix	Method	Prep Batch
14E0066-BLK1	Method Blank	Total	Soil	EPA 8260C	14E0066_P
14E0066-BS1	Lab Control Sample	Total	Soil	EPA 8260C	14E0066_P
14E0066-BSD1	Lab Control Sample Dup	Total	Soil	EPA 8260C	14E0066_P
230-108-1	14-AKRE-Cuttings	Total	Solid	EPA 8260C	14E0066_P
230-108-2	14-AKRE-TB	Total	Solid	EPA 8260C	14E0066_P

Prep Batch: 14E0066_P

Client Sample ID	Prep Type	Matrix	Method	Prep Batch
Method Blank	Total	Soil	GC/MS Volatiles	
Lab Control Sample	Total	Soil	GC/MS Volatiles	
Lab Control Sample Dup	Total	Soil	GC/MS Volatiles	
14-AKRE-Cuttings	Total	Solid	GC/MS Volatiles	
14-AKRE-TB	Total	Solid	GC/MS Volatiles	
	Method Blank Lab Control Sample Lab Control Sample Dup 14-AKRE-Cuttings	Method Blank Total Lab Control Sample Total Lab Control Sample Dup Total 14-AKRE-Cuttings Total	Method Blank Total Soil Lab Control Sample Total Soil Lab Control Sample Dup Total Soil 14-AKRE-Cuttings Total Solid	Method Blank Total Soil GC/MS Volatiles Lab Control Sample Lab Control Sample Dup Total Soil GC/MS Volatiles Control Sample Dup Total Soil GC/MS Volatiles Soil GC/MS Volatiles

GC VOA

Prep Batch: 471

Lab Sample ID	Client Sample ID	Prep Type	Matrix	Method	Prep Batch
230-108-1	14-AKRE-Cuttings	Total/NA	Solid	5035	
230-108-1 DU	14-AKRE-Cuttings	Total/NA	Solid	5035	
230-108-1 MS	14-AKRE-Cuttings	Total/NA	Solid	5035	
230-108-1 MSD	14-AKRE-Cuttings	Total/NA	Solid	5035	
230-108-2	14-AKRE-TB	Total/NA	Solid	5035	
LCS 230-471/4-A	Lab Control Sample	Total/NA	Solid	5035	
LCSD 230-471/5-A	Lab Control Sample Dup	Total/NA	Solid	5035	
MB 230-471/1-A	Method Blank	Total/NA	Solid	5035	

Analysis Batch: 475

Lab Sample ID	Client Sample ID	Prep Type	Matrix	Method	Prep Batch
230-108-2	14-AKRE-TB	Total/NA	Solid	AK101	471
LCS 230-471/4-A	Lab Control Sample	Total/NA	Solid	AK101	471
LCSD 230-471/5-A	Lab Control Sample Dup	Total/NA	Solid	AK101	471
MB 230-471/1-A	Method Blank	Total/NA	Solid	AK101	471

Prep Batch: 482

Lab Sample ID	Client Sample ID	Prep Type	Matrix	Method	Prep Batch
LCS 230-482/4-A	Lab Control Sample	Total/NA	Solid	5035	
LCSD 230-482/5-A	Lab Control Sample Dup	Total/NA	Solid	5035	
MB 230-482/1-A	Method Blank	Total/NA	Solid	5035	

Analysis Batch: 486

Lab Sample ID	Client Sample ID	Prep Type	Matrix	Method	Prep Batch
230-108-1	14-AKRE-Cuttings	Total/NA	Solid	AK101	471
230-108-1 DU	14-AKRE-Cuttings	Total/NA	Solid	AK101	471
230-108-1 MS	14-AKRE-Cuttings	Total/NA	Solid	AK101	471
230-108-1 MSD	14-AKRE-Cuttings	Total/NA	Solid	AK101	471
LCS 230-482/4-A	Lab Control Sample	Total/NA	Solid	AK101	482
LCSD 230-482/5-A	Lab Control Sample Dup	Total/NA	Solid	AK101	482
MB 230-482/1-A	Method Blank	Total/NA	Solid	AK101	482

Page 21 of 29

Client: Ahtna Engineering Services LLC Project/Site: Ahtna Engineering Services

GC Semi VOA

Prep Batch: 461

Lab Sample ID	Client Sample ID	Prep Type	Matrix	Method	Prep Batch
230-108-1	230-108-1 14-AKRE-Cuttings		Solid	3545	
230-109-A-1-B DU	Duplicate	Total/NA	Solid	3545	
230-109-A-1-C MS	Matrix Spike	Total/NA	Solid	3545	
230-109-A-1-D MSD	Matrix Spike Duplicate	Total/NA	Solid	3545	
LCS 230-461/2-A	Lab Control Sample	Total/NA	Solid	3545	
LCSD 230-461/3-A	Lab Control Sample Dup	Total/NA	Solid	3545	
MB 230-461/1-A	Method Blank	Total/NA	Solid	3545	

Analysis Batch: 464

Lab Sample ID	Client Sample ID	Prep Type	Matrix	Method	Prep Batch
230-109-A-1-B DU	Duplicate	Total/NA	Solid	AK102 & 103	461
230-109-A-1-C MS	Matrix Spike	Total/NA	Solid	AK102 & 103	461
230-109-A-1-D MSD	Matrix Spike Duplicate	Total/NA	Solid	AK102 & 103	461

Analysis Batch: 465

Lab Sample ID	Client Sample ID	Prep Type	Matrix	Method	Prep Batch
LCSD 230-461/3-A	Lab Control Sample Dup	Total/NA	Solid	AK102 & 103	461
MB 230-461/1-A	Method Blank	Total/NA	Solid	AK102 & 103	461

Analysis Batch: 477

Lab Sample ID	Client Sample ID	Prep Type	Matrix	Method	Prep Batch
230-108-1	14-AKRE-Cuttings	Total/NA	Solid	AK102 & 103	461
LCS 230-461/2-A	Lab Control Sample	Total/NA	Solid	AK102 & 103	461

General Chemistry

Analysis Batch: 460

Lab Sample ID	Client Sample ID	Prep Type	Matrix	Method	Prep Batch
230-108-1	14-AKRE-Cuttings	Total/NA	Solid	Moisture	
230-108-2	14-AKRE-TB	Total/NA	Solid	Moisture	
230-109-A-2 DU	Duplicate	Total/NA	Solid	Moisture	

Wet Chem

Analysis Batch: 14E0076

Lab Sample ID	Client Sample ID	Prep Type	Matrix	Method	Prep Batch
230-108-1	14-AKRE-Cuttings	Total	Solid	TA SOP	14E0076_P
230-108-2	14-AKRE-TB	Total	Solid	TA SOP	14E0076_P

Prep Batch: 14E0076_P

Lab Sample ID	Client Sample ID	Prep Type	Matrix	Method	Prep Batch
230-108-1	14-AKRE-Cuttings	Total	Solid	Wet Chem	
230-108-2	14-AKRE-TB	Total	Solid	Wet Chem	

TestAmerica Anchorage

Lab Chronicle

Client: Ahtna Engineering Services LLC Project/Site: Ahtna Engineering Services

Date Collected: 05/09/14 16:30

Date Received: 05/09/14 17:00

Client Sample ID: 14-AKRE-Cuttings

TestAmerica Job ID: 230-108-1

Lab Sample ID: 230-108-1

Matrix: Solid Percent Solids: 93

Lab Sample ID: 230-108-2

	Batch	Batch		Dilution	Batch	Prepared		
Prep Type	Type	Method	Run	Factor	Number	or Analyzed	Analyst	Lab
Total	Prep	GC/MS Volatiles		0.291	14E0066_P	05/13/14 13:08	CBW	TAL SPK
Total	Analysis	EPA 8260C		10.0	14E0066	05/13/14 15:32	CBW	TAL SPK
Total/NA	Prep	5035			471	05/13/14 11:06	ASD	TAL ANC
Total/NA	Analysis	AK101		1	486	05/14/14 18:45	ASD	TAL ANC
Total/NA	Prep	3545			461	05/12/14 12:00	KDC	TAL ANC
Total/NA	Analysis	AK102 & 103		20	477	05/14/14 13:45	KDC	TAL ANC
Total/NA	Analysis	Moisture		1	460	05/12/14 09:55	KDC	TAL ANC
Total	Prep	Wet Chem		1.00	14E0076_P	05/11/14 09:55	RA	TAL SPK
Total	Analysis	TA SOP		1.00	14E0076	05/12/14 09:55	RA	TAL SPK

Client Sample ID: 14-AKRE-TB

Date Collected: 05/09/14 16:00

Matrix: Solid Date Received: 05/09/14 17:00 **Percent Solids: 100**

	Batch	Batch		Dilution	Batch	Prepared		
Prep Type	Type	Method	Run	Factor	Number	or Analyzed	Analyst	Lab
Total	Prep	GC/MS Volatiles		1.00	14E0066_P	05/13/14 13:08	CBW	TAL SPK
Total	Analysis	EPA 8260C		1.00	14E0066	05/13/14 15:55	CBW	TAL SPK
Total/NA	Prep	5035			471	05/13/14 11:06	ASD	TAL ANC
Total/NA	Analysis	AK101		1	475	05/13/14 16:54	ASD	TAL ANC
Total/NA	Analysis	Moisture		1	460	05/12/14 09:55	KDC	TAL ANC

Laboratory References:

TAL ANC = TestAmerica Anchorage, 2000 West International Airport Road, Suite A10, Anchorage, AK 99502-1119, TEL (907)563-9200

TAL SPK = TestAmerica Spokane, 11922 East 1st. Avenue, Spokane, WA 99206, TEL (509)924-9200

Certification Summary

Client: Ahtna Engineering Services LLC Project/Site: Ahtna Engineering Services

TestAmerica Job ID: 230-108-1

2

Laboratory: TestAmerica Anchorage

The certifications listed below are applicable to this report.

Authority Program EPA Region Certification	n ID Expiration Date
Alaska State Program 10 AK00975	06-30-14
Alaska (UST) State Program 10 UST-067	06-16-14

Laboratory: TestAmerica Spokane

All certifications held by this laboratory are listed. Not all certifications are applicable to this report.

Authority	Program	EPA Region	Certification ID	Expiration Date
Alaska (UST)	State Program	10	UST-071	10-31-14
Washington	State Program	10	C569	01-06-15

2

4

5

7

8

9

11

10

14

Method Summary

Client: Ahtna Engineering Services LLC Project/Site: Ahtna Engineering Services

TestAmerica Job ID: 230-108-1

Method	Method Description	Protocol	Laboratory
EPA 8260C	Volatile Organic Compounds by EPA Method 8260C		TAL SPK
AK101	Alaska - Gasoline Range Organics (GC)	ADEC	TAL ANC
AK102 & 103	Alaska - Diesel Range Organics & Residual Range Organics (GC)	ADEC	TAL ANC
Moisture	Percent Moisture	EPA	TAL ANC
TA SOP	Conventional Chemistry Parameters by APHA/EPA Methods		TAL SPK

Protocol References:

ADEC = Alaska Department of Environmental Conservation

EPA = US Environmental Protection Agency

Laboratory References:

TAL ANC = TestAmerica Anchorage, 2000 West International Airport Road, Suite A10, Anchorage, AK 99502-1119, TEL (907)563-9200

TAL SPK = TestAmerica Spokane, 11922 East 1st. Avenue, Spokane, WA 99206, TEL (509)924-9200

3

4

5

6

8

9

a a

12

Sample Summary

Client: Ahtna Engineering Services LLC Project/Site: Ahtna Engineering Services

TestAmerica Job ID: 230-108-1

Lab Sample ID	Client Sample ID	Matrix	Collected	Received
230-108-1	14-AKRE-Cuttings	Solid	05/09/14 16:30	05/09/14 17:00
230-108-2	14-AKRE-TB	Solid	05/09/14 16:00	05/09/14 17:00

2

_

6

8

9

11

12

11

TestAmerica

THE LEADER IN ENVIRONMENTAL TESTING

Page 27 of 29

5/22/2014

2000

253-922-2310 FAX 922-5047 06-5302

108-7145

02-1119

CHAIN OF CUSTODY REPORT Work Order #: 230-108 Antha Engineering Semicu. 3100 Beacon Blod TURNAROUND REQUEST in Business Days * Organic & Inorganic Analyses

REPORT TO: Olga Atenual ADDRESS: 110 W, 38th Ave. 99503 20266,008 P.O. NUMBER: **PRESERVATIVE** PROJECT NUMBER: 20266.008 SAMPLED BY: Olga Stewart REQUESTED ANALYSES OTHER Turnaround Requests less than standard may incur Rush Charges VOCS DRO SAMPLING CLIENT SAMPLE #OF LOCATION/ 8260 DATE/TIME IDENTIFICATION (W, S, O)CONT. COMMENTS WO ID 14-AKRE-CUTTINGS 5/9/14 16:30 5 DI 02 DATE: 5/4/14 RELEASED BY: FIRM: TH-AK TIME: 17:00 PRINT NAME: DATE: RECEIVED BY: RELEASED BY: PRINT NAME: FIRM: TIME: PRINT NAME: FIRM:

TAL-1000 (0612)

SIGNATURE

THE LEADER IN ENVIRONMENTAL TESTING 654340

Custody Seal

230-108

THE LEADER IN ENVIRONMENTAL TESTING
654340

Login Sample Receipt Checklist

Client: Ahtna Engineering Services LLC

Job Number: 230-108-1

Login Number: 108 List Source: TestAmerica Anchorage

List Number: 1 Creator: Pilch, Andrew C

Cleator. Filch, Andrew C		
Question	Answer	Comment
Radioactivity wasn't checked or is = background as measured by a survey meter.</td <td>True</td> <td></td>	True	
The cooler's custody seal, if present, is intact.	True	
Sample custody seals, if present, are intact.	True	
The cooler or samples do not appear to have been compromised or tampered with.	True	
Samples were received on ice.	True	
Cooler Temperature is acceptable.	True	Received same day of collection; chilling process has begun.
Cooler Temperature is recorded.	True	15.8 C
COC is present.	True	
COC is filled out in ink and legible.	True	
COC is filled out with all pertinent information.	True	
s the Field Sampler's name present on COC?	True	
There are no discrepancies between the containers received and the COC.	True	
Samples are received within Holding Time.	True	
Sample containers have legible labels.	True	
Containers are not broken or leaking.	True	
Sample collection date/times are provided.	True	
Appropriate sample containers are used.	True	
Sample bottles are completely filled.	True	
Sample Preservation Verified.	True	
There is sufficient vol. for all requested analyses, incl. any requested MS/MSDs	True	
Containers requiring zero headspace have no headspace or bubble is 6mm (1/4").	True	
Multiphasic samples are not present.	True	
Samples do not require splitting or compositing.	True	
Residual Chlorine Checked.	N/A	

_

Λ

5

6

8

10

12

13

Laboratory Data Review Checklist

Title: Project Manager Date: 8/16/14 CS Report Name: Focused Groundwater Characterization Report Date: 8/29/14 Consultant Firm: Ahtna Engineering Services, LLC Laboratory Name: OnSite Environmental, Inc. Laboratory Report Number: 1405-144 ADEC File Number: 2100.38.434 ADEC RecKey Number: 1. Laboratory a. Did an ADEC CS approved laboratory receive and perform all of the submitted sample analyses? X Yes No NA (Please explain.) Comments: b. If the samples were transferred to another "network" laboratory or sub-contracted to an alternate laboratory, was the laboratory performing the analyses ADEC CS approved? X Yes No NA (Please explain.) Comments: Five samples were analyzed by Microseeps (Pace Analytical) for methane, ethane, and ethene. 2. Chain of Custody (COC) a. COC information completed, signed, and dated (including released/received by)? X Yes No NA (Please explain.) Comments: b. Correct analyses requested? X Yes No NA (Please explain.) Comments: 3. Laboratory Sample Receipt Documentation a. Sample/cooler temperature documented and within range at receipt (4° ± 2° C)? X Yes No NA (Please explain.) Comments: Within range for sample shipped to OnSite, 2°C for the transferred samples. b. Sample preservation acceptable – acidified waters, Methanol preserved VOC soil (GRO, BTEX, Volatile Chlorinated Solvents, etc.)? X Yes No NA (Please explain.) Comments:	Completed by:	Olga Stewart	
Consultant Firm: Ahtna Engineering Services, LLC Laboratory Name: OnSite Environmental, Inc. Laboratory Report Number: 1405-144 ADEC File Number: 2100.38.434 ADEC RecKey Number: 1. Laboratory a. Did an ADEC CS approved laboratory receive and perform all of the submitted sample analyses? X Yes No NA (Please explain.) Comments: b. If the samples were transferred to another "network" laboratory or sub-contracted to an alternate laboratory, was the laboratory performing the analyses ADEC CS approved? X Yes No NA (Please explain.) Comments: Five samples were analyzed by Microseeps (Pace Analytical) for methane, ethane, and ethene. 2. Chain of Custody (COC) a. COC information completed, signed, and dated (including released/received by)? X Yes No NA (Please explain.) Comments: b. Correct analyses requested? X Yes No NA (Please explain.) Comments: 3. Laboratory Sample Receipt Documentation a. Sample/cooler temperature documented and within range at receipt (4° ± 2° C)? X Yes No NA (Please explain.) Comments: Within range for sample shipped to OnSite, 2°C for the transferred samples. b. Sample preservation acceptable — acidified waters, Methanol preserved VOC soil (GRO, BTEX, Volatile Chlorinated Solvents, etc.)?	Title:	Project Manager	Date: 8/16/14
Laboratory Name: OnSite Environmental, Inc. Laboratory Report Number: 1. Laboratory a. Did an ADEC CS approved laboratory receive and perform all of the submitted sample analyses? X Yes No NA (Please explain.) b. If the samples were transferred to another "network" laboratory or sub-contracted to an alternate laboratory, was the laboratory performing the analyses ADEC CS approved? X Yes No NA (Please explain.) Comments: Five samples were analyzed by Microseeps (Pace Analytical) for methane, ethane, and ethene. 2. Chain of Custody (COC) a. COC information completed, signed, and dated (including released/received by)? X Yes No NA (Please explain.) Comments: b. Correct analyses requested? X Yes No NA (Please explain.) Comments: 3. Laboratory Sample Receipt Documentation a. Sample/cooler temperature documented and within range at receipt (4° ± 2° C)? X Yes No NA (Please explain.) Comments: Within range for sample shipped to OnSite, 2°C for the transferred samples. b. Sample preservation acceptable – acidified waters, Methanol preserved VOC soil (GRO, BTEX, Volatile Chlorinated Solvents, etc.)?	CS Report Name	Focused Groundwater Characteriza	ation Report Date: 8/29/14
ADEC File Number: 1. Laboratory a. Did an ADEC CS approved laboratory receive and perform all of the submitted sample analyses? X Yes No NA (Please explain.) Comments: b. If the samples were transferred to another "network" laboratory or sub-contracted to an alternate laboratory, was the laboratory performing the analyses ADEC CS approved? X Yes No NA (Please explain.) Comments: Five samples were analyzed by Microseeps (Pace Analytical) for methane, ethane, and ethene. 2. Chain of Custody (COC) a. COC information completed, signed, and dated (including released/received by)? X Yes No NA (Please explain.) Comments: b. Correct analyses requested? X Yes No NA (Please explain.) Comments: 3. Laboratory Sample Receipt Documentation a. Sample/cooler temperature documented and within range at receipt (4° ± 2° C)? X Yes No NA (Please explain.) Comments: Within range for sample shipped to OnSite, 2°C for the transferred samples. b. Sample preservation acceptable – acidified waters, Methanol preserved VOC soil (GRO, BTEX, Volatile Chlorinated Solvents, etc.)?	Consultant Firm:	Ahtna Engineering Services, LLC	
a. Did an ADEC CS approved laboratory receive and perform all of the submitted sample analyses? X Yes No NA (Please explain.) Comments: b. If the samples were transferred to another "network" laboratory or sub-contracted to an alternate laboratory, was the laboratory performing the analyses ADEC CS approved? X Yes No NA (Please explain.) Comments: Five samples were analyzed by Microseeps (Pace Analytical) for methane, ethane, and ethene. 2. Chain of Custody (COC) a. COC information completed, signed, and dated (including released/received by)? X Yes No NA (Please explain.) Comments: b. Correct analyses requested? X Yes No NA (Please explain.) Comments: 3. Laboratory Sample Receipt Documentation a. Sample/cooler temperature documented and within range at receipt (4° ± 2° C)? X Yes No NA (Please explain.) Comments: Within range for sample shipped to OnSite, 2°C for the transferred samples. b. Sample preservation acceptable — acidified waters, Methanol preserved VOC soil (GRO, BTEX, Volatile Chlorinated Solvents, etc.)?	Laboratory Name	OnSite Environmental, Inc.	Laboratory Report Number: 1405-144
a. Did an ADEC CS approved laboratory receive and perform all of the submitted sample analyses? X Yes No NA (Please explain.) Comments: b. If the samples were transferred to another "network" laboratory or sub-contracted to an alternate laboratory, was the laboratory performing the analyses ADEC CS approved? X Yes No NA (Please explain.) Comments: Five samples were analyzed by Microseeps (Pace Analytical) for methane, ethane, and ethene. 2. Chain of Custody (COC) a. COC information completed, signed, and dated (including released/received by)? X Yes No NA (Please explain.) Comments: b. Correct analyses requested? X Yes No NA (Please explain.) Comments: 3. Laboratory Sample Receipt Documentation a. Sample/cooler temperature documented and within range at receipt (4° ± 2° C)? X Yes No NA (Please explain.) Comments: Within range for sample shipped to OnSite, 2°C for the transferred samples. b. Sample preservation acceptable – acidified waters, Methanol preserved VOC soil (GRO, BTEX, Volatile Chlorinated Solvents, etc.)?	ADEC File Numl	er: 2100.38.434	ADEC RecKey Number:
laboratory, was the laboratory performing the analyses ADEC CS approved? X Yes No NA (Please explain.) Comments: Five samples were analyzed by Microseeps (Pace Analytical) for methane, ethane, and ethene. 2. Chain of Custody (COC) a. COC information completed, signed, and dated (including released/received by)? X Yes No NA (Please explain.) Comments: b. Correct analyses requested? X Yes No NA (Please explain.) Comments: 3. Laboratory Sample Receipt Documentation a. Sample/cooler temperature documented and within range at receipt (4° ± 2° C)? X Yes No NA (Please explain.) Comments: Within range for sample shipped to OnSite, 2°C for the transferred samples. b. Sample preservation acceptable – acidified waters, Methanol preserved VOC soil (GRO, BTEX, Volatile Chlorinated Solvents, etc.)?	a. Did ar		
2. Chain of Custody (COC) a. COC information completed, signed, and dated (including released/received by)? X Yes No NA (Please explain.) Comments: b. Correct analyses requested? X Yes No NA (Please explain.) Comments: 3. Laboratory Sample Receipt Documentation a. Sample/cooler temperature documented and within range at receipt (4° ± 2° C)? X Yes No NA (Please explain.) Comments: Within range for sample shipped to OnSite, 2°C for the transferred samples. b. Sample preservation acceptable – acidified waters, Methanol preserved VOC soil (GRO, BTEX, Volatile Chlorinated Solvents, etc.)?	labora X	Yes No NA (Please exp	e analyses ADEC CS approved? clain.) Comments:
a. COC information completed, signed, and dated (including released/received by)? X Yes No NA (Please explain.) Comments: b. Correct analyses requested? X Yes No NA (Please explain.) Comments: 3. Laboratory Sample Receipt Documentation a. Sample/cooler temperature documented and within range at receipt (4° ± 2° C)? X Yes No NA (Please explain.) Comments: Within range for sample shipped to OnSite, 2°C for the transferred samples. b. Sample preservation acceptable – acidified waters, Methanol preserved VOC soil (GRO, BTEX, Volatile Chlorinated Solvents, etc.)?			ace 1 mary treaty 101 methanie, cutaine, and cuteine.
X Yes No NA (Please explain.) Comments: 3. Laboratory Sample Receipt Documentation a. Sample/cooler temperature documented and within range at receipt (4° ± 2° C)? X Yes No NA (Please explain.) Comments: Within range for sample shipped to OnSite, 2°C for the transferred samples. b. Sample preservation acceptable – acidified waters, Methanol preserved VOC soil (GRO, BTEX, Volatile Chlorinated Solvents, etc.)?	a. COC	nformation completed, signed, and da	· · · · · · · · · · · · · · · · · · ·
 a. Sample/cooler temperature documented and within range at receipt (4° ± 2° C)? X Yes No NA (Please explain.) Comments: Within range for sample shipped to OnSite, 2°C for the transferred samples. b. Sample preservation acceptable – acidified waters, Methanol preserved VOC soil (GRO, BTEX, Volatile Chlorinated Solvents, etc.)? 		• •	ain.) Comments:
b. Sample preservation acceptable – acidified waters, Methanol preserved VOC soil (GRO, BTEX, Volatile Chlorinated Solvents, etc.)?	a. Sampl	e/cooler temperature documented and	
Volatile Chlorinated Solvents, etc.)?	Within	ange for sample shipped to OnSite, 2°	C for the transferred samples.
X Yes No NA (Please explain.) Comments:	Volati	e Chlorinated Solvents, etc.)?	•
	X	res No NA (Please expl	ain.) Comments:

	c.	Sample condition of X Yes	locume No	ented – broken, leaking (Me NA (Please explain.)	thanol), zero headspace (VOC vials)? Comments:
		No issues with sample	e cond	ition.	
	d.	•	-	•	ed? For example, incorrect sample of acceptable range, insufficient or missing
		X Yes	No	NA (Please explain.)	Comments:
		Field filtered sample	s were	received containing solid m	naterial.
	e.	Data quality or usa	bility a	ffected? (Please explain.)	Comments:
		Data quality and usab	oility is	not affected.	
4.		Narrative Present and unders X Yes	tandab No	le? NA (Please explain.)	Comments:
	L				
	b.	Discrepancies, erro Yes No	_	C failures identified by the NA (Please explain.)	lab? Comments:
		There were no discre	pancie	s or errors noted.	
	c.	Were all corrective Yes No		s documented? NA (Please explain.)	Comments:
		There were no correct	tive ac	tions noted.	
	d.	What is the effect of	n data	quality/usability according	to the case narrative? Comments:
		Data quality and usal	oility is	not affected.	
5.	-	oles Results Correct analyses pe X Yes	erforme No	ed/reported as requested on NA (Please explain.)	COC? Comments:
	b.	All applicable hold X Yes	ing tim No	nes met? NA (Please explain.)	Comments:

c. All soils rep Yes	ported o	•	weight basis? X NA (Please explain.)	Comments:
This SDG do	es not ii	nclude	any soil samples.	
d. Are the rep	orted Po	QLs les	s than the Cleanup Level	or the minimum required detection level for the
Yes	X	No	NA (Please explain.)	Comments:
to greater than	the Clo	eanup I	Level. Ahtna requested th	at elevated the PQL of TCE, 1,1-DCE, and VC at those samples/analytes be reported to the PQL (5 ug/L) for the two samples for TCE.
e. Data quality	y or usa	bility a	ffected?	
				Comments:
Data quality	or usabi	lity is r	not affected.	
X Yes		No	NA (Please explain.)	Comments:
ii. All X Yes		blank 1 No	results less than PQL? NA (Please explain.)	Comments:
iii. If al	oove PÇ	L, wha	nt samples are affected?	Comments:
No results are	e greate	than t	he PQL.	
iv. Do Yes			mple(s) have data flags a (Please explain.)	nd if so, are the data flags clearly defined? Comments:
No samples a	re affec	ted.		
v. Data	a quality	y or usa	ability affected? (Please	explain.) Comments:
Data quality a	and usal	oility is	not affected.	

i.	-		CS/LCSD reported per matrix ethods, LCS required per SV	x, analysis and 20 samples? (LCS/LCSD V846)
X	Yes	No	NA (Please explain.)	Comments:
ii.		organics	one LCS and one sample d	uplicate reported per matrix, analysis and
X	samples? Yes	No	NA (Please explain.)	Comments:
	And project AK102 75	ct specifi %-125%	ted DQOs, if applicable. (AK), AK103 60%-120%; all oth	ed and within method or laboratory limits? I Petroleum methods: AK101 60%-120%, er analyses see the laboratory QC pages)
X	Yes	No	NA (Please explain.)	Comments:
	laboratory LCS/LCSI	limits? A	And project specified DQOs,	D) reported and less than method or if applicable. RPD reported from uplicate. (AK Petroleum methods 20%; a Comments:
V.	If %R or R	RPD is o	utside of acceptable limits, w	hat samples are affected? Comments:
% R and	RPD are w	ithin acc	ceptable limits.	
	Do the afformation of the the affo		mple(s) have data flags? If so NA (Please explain.)	o, are the data flags clearly defined? Comments:
No samp	oles are affe	cted.		
vii	. Data quali	ty or usa	bility affected? (Use comme	nt box to explain.) Comments:
Data qua	ality and usa	ability ar	e not affected.	
Surrog	gates – Orga	nics Onl	У	
i. X	Are surrog Yes	ate reco	veries reported for organic an NA (Please explain.)	nalyses – field, QC and laboratory samples Comments:

b. Laboratory Control Sample/Duplicate (LCS/LCSD)

And	project specif	` * *	rted and within method or laborator AK Petroleum methods 50-150 %R;	•
X Yes		NA (Please explain.)	Comments:	
	s clearly define	ed?	coveries have data flags? If so, are	the data
Yes	No X NA	(Please explain.)	Comments:	
No samples h	ave failed surr	ogate recoveries.		
iv. Data	a quality or usa	bility affected? (Use the co	omment box to explain.) Comments:	
Data quality a	and usability ar	e not affected.		
l. Trip blank - Soil	– Volatile anal	yses only (GRO, BTEX, V	olatile Chlorinated Solvents, etc.): <u>V</u>	Water and
	trip blank repo not, enter expla	- ·	nd for each cooler containing volati	le samples
X Yes	-	NA (Please explain.)	Comments:	
	ot, a comment	o transport the trip blank a explaining why must be en NA (Please explain.)	nd VOA samples clearly indicated ontered below) Comments:	on the COC
All VOA sam	nples were ship	ped in one cooler.		
iii. All X Yes	results less that No	n PQL? NA (Please explain.)	Comments:	
iv. If al	pove PQL, wha	t samples are affected?	Comments:	
No results are	e greater than tl	ne PQL.		
v. Data	a quality or usa	bility affected? (Please exp	olain.) Comments:	
Data quality a	and usability ar	e not affected.		

e.	Field Duplicate	
C.	I icia Duplicate	•

i. One field duplicate submitted per matrix, analysis and 10 project samples?

Yes X No NA (Please explain.)

Comments:

Two field duplicates were submitted for analysis of VOCs (MW60, MW80). Per the approved work plan, field duplicates were not submitted for analysis of the MNA parameters: TOC, Nitrate/Nitrite, Sulfate, Total Iron, Methane, Ethane, or Ethene.

ii. Submitted blind to lab?

X Yes

No NA (Please explain.)

Comments:

iii. Precision – All relative percent differences (RPD) less than specified DQOs? (Recommended: 30% water, 50% soil)

RPD (%) = Absolute value of:
$$\frac{(R_1-R_2)}{((R_1+R_2)/2)} \times 100$$

Where $R_1 = Sample Concentration$

 R_2 = Field Duplicate Concentration

X Yes

No NA (Please explain.)

Comments:

RPD could only be calculated for PCE. All other analytes were non-detect.

iv. Data quality or usability affected? (Use the comment box to explain why or why not.)

Comments:

Data quality and usability is not affected.

f. Decontamination or Equipment Blank (If not used explain why).

Yes X No

NA (Please explain.)

Comments:

Per the approved work plan, equipment blanks were not submitted.

i. All results less than PQL?

Yes No X NA (Please explain.)

Comments:

Equipment blanks not used.

ii. If above PQL, what samples are affected?

Comments:

Equipment blanks not used.

iii. Data quality or usability affected? (Please explain.)

Comments:

Data quality and usability is not affected.

- 7. Other Data Flags/Qualifiers (ACOE, AFCEE, Lab Specific, etc.)
 - a. Defined and appropriate?

X Yes No NA (Please explain.) Comments:

Some results flagged as "J" as estimated because the result is greater than the MDL but less than the PQL.

Laboratory Data Review Checklist

Completed b	y: Olga Ste	wart				
Title:	Project I	Manager		Date:	8/16/14	
CS Report N	ame: Focus	ed Groundwater Charac	terization	Report Date	: 8/2	29/14
Consultant F	irm: Ahtna	Engineering Services, L	LC			
Laboratory N	Vame: SiRE	М	Labora	tory Report N	umber:	S-3215
ADEC File N	Number: 210	00.38.434	ADEC Rec	Key Number:		
	id an ADEC (Yes X	CS approved laboratory and No NA (Please explain pprove laboratories for laboratories for laboratories)	1.)	form all of the Comments:	e submitte	ed sample analyses?
b. If	the samples w	vere transferred to anoth the laboratory performi	er "network" l	•		cted to an alternate
San	nples were not	transferred to another l	aboratory.			
	Custody (COC OC information X Yes	C) on completed, signed, ar No NA (Please		_	received to	oy)?
b. C	orrect analyse X Yes	s requested? No NA (Please	explain.)	Com	nments:	
Not	e that addition	al analysis was requeste	ed after submit	tal.		
	•	eeipt Documentation emperature documented No NA (Please		•	(4° ± 2° Coments:	J)?
Rec	ceived at 2°C					
	olatile Chlorin	ation acceptable – acidit nated Solvents, etc.)?		-		soil (GRO, BTEX,
	X Yes	No NA (Please	explain.)	Com	nments:	

c.	Sample condition documented – broken, leaking (Methanol), zero headspace (VOC vials)? X Yes No NA (Please explain.) Comments:
1	To issues with sample condition.
d.	If there were any discrepancies, were they documented? For example, incorrect sample containers/preservation, sample temperature outside of acceptable range, insufficient or missing samples, etc.? Yes No X NA (Please explain.) Comments:
1	To discrepancies documented.
	Data quality or usability affected? (Please explain.) Comments:
Ι	ata quality and usability is not affected.
	Arrative Present and understandable? Yes X No NA (Please explain.) Comments:
1	To narrative provided.
b.	Discrepancies, errors or QC failures identified by the lab? Yes No X NA (Please explain.) Comments:
	here were no discrepancies or errors noted.
c.	Were all corrective actions documented? Yes No X NA (Please explain.) Comments:
	here were no corrective actions noted.
d.	What is the effect on data quality/usability according to the case narrative? Comments:
I	Pata quality and usability is not affected.
-	es Results Correct analyses performed/reported as requested on COC? X Yes No NA (Please explain.) Comments:
b.	All applicable holding times met? X Yes No NA (Please explain.) Comments:

d. A	re the repo oject? Yes		QLs le	e any soil samples.	
pı	roject? Yes			ace than the Cleanun I avel or	
_	Yes	No		ess than the Cleanup Level of	the minimum required detection level for the
The	т		X	NA (Please explain.)	Comments:
	re are no I	OQOs f	or Dh	c or VC PQLs.	
e. D	ata quality	or usa	bility	affected?	Comments:
Dat	a quality o	r usabi	lity is	not affected.	
	<u> </u>				
a. M	i. One X Yes		l blan No	k reported per matrix, analys NA (Please explain.)	is and 20 samples? Comments:
Cal	led DNA E	Extracti	on Bl	ank.	
	ii. All n X Yes	method	blank No	results less than PQL? NA (Please explain.	.) Comments:
	iii. If ab	ove PQ	L, wł	nat samples are affected?	Comments:
No	samples af	fected.			
	iv. Do th			ample(s) have data flags and A (Please explain.)	if so, are the data flags clearly defined? Comments:
No	samples ar	e affec	ted.		
	v. Data	quality	or us	sability affected? (Please exp	plain.) Comments:
Dat	a quality a	nd usat	oility i	is not affected.	

 i. Organics – One LCS/LCSD reported per matrix required per AK methods, LCS required per SV 	
Yes X No NA (Please explain.)	Comments:
LCS called positive control. LCSD not reported.	
ii. Metals/Inorganics – one LCS and one sample of	luplicate reported per matrix, analysis and 20
samples? Yes X No NA (Please explain.)	Comments:
No metals or inorganics in this SDG.	
 iii. Accuracy – All percent recoveries (%R) report And project specified DQOs, if applicable. (AF AK102 75%-125%, AK103 60%-120%; all oth Yes No X NA (Please explain.) 	X Petroleum methods: AK101 60%-120%,
Accuracies are within laboratory control range – reported	d as "passed."
 iv. Precision – All relative percent differences (RF laboratory limits? And project specified DQOs LCS/LCSD, MS/MSD, and or sample/sample of other analyses see the laboratory QC pages) X Yes No NA (Please explain.) 	, if applicable. RPD reported from
Precisions are within laboratory control range – reported	l as "passed."
v. If %R or RPD is outside of acceptable limits, w	what samples are affected? Comments:
NA	
vi. Do the affected sample(s) have data flags? If so Yes No X NA (Please explain.)	o, are the data flags clearly defined? Comments:
No samples are affected.	
vii. Data quality or usability affected? (Use comme	ent box to explain.) Comments:
Data quality and usability are not affected.	
e. Surrogates – Organics Only	
 i. Are surrogate recoveries reported for organic a Yes X No NA (Please explain.) 	nalyses – field, QC and laboratory samples? Comments:

b. Laboratory Control Sample/Duplicate (LCS/LCSD)

ii. Accuracy – All percent recoveries (%R) reported And project specified DQOs, if applicable. (AK	The state of the s
analyses see the laboratory report pages) Yes X No NA (Please explain.)	Comments:
iii. Do the sample results with failed surrogate reco	overies have data flags? If so, are the data
Yes No X NA (Please explain.)	Comments:
NA	
iv. Data quality or usability affected? (Use the com-	nment box to explain.) Comments:
Data quality and usability are not affected.	
 d. Trip blank – Volatile analyses only (GRO, BTEX, Vola Soil i. One trip blank reported per matrix, analysis and (If not, enter explanation below.) Yes No X NA (Please explain.) 	
Trip blank not necessary for Dhc or VC.	
ii. Is the cooler used to transport the trip blank and (If not, a comment explaining why must be enter Yes No X NA (Please explain.)	
No trip blanks included.	
iii. All results less than PQL? Yes No X NA (Please explain.)	Comments:
No trip blanks included.	
iv. If above PQL, what samples are affected?	Comments:
No trip blanks included.	
v. Data quality or usability affected? (Please expla	ain.) Comments:
Data quality and usability are not affected.	

		_	
e.	Field	Dunl	icate
C.	TICIU	Dupi	ıcaıc

i. One field duplicate submitted per matrix, analysis and 10 project samples?

Yes X No NA (Please explain.)

Comments:

Per the approved work plan, field duplicates were not submitted for analysis of CSIA.

ii. Submitted blind to lab?

Yes No X NA (Please explain.)

Comments:

No field duplicate.

iii. Precision – All relative percent differences (RPD) less than specified DQOs? (Recommended: 30% water, 50% soil)

RPD (%) = Absolute value of:
$$\frac{(R_1-R_2)}{((R_1+R_2)/2)} \times 100$$

Where $R_1 = Sample Concentration$

 R_2 = Field Duplicate Concentration

Yes No X NA (Please explain.)

Comments:

No field duplicate.

iv. Data quality or usability affected? (Use the comment box to explain why or why not.)

Comments:

Data quality and usability is not affected.

f. Decontamination or Equipment Blank (If not used explain why).

Yes X No

NA (Please explain.)

Comments:

Per the approved work plan, equipment blanks were not submitted.

i. All results less than PQL?

Yes No X NA (Please explain.)

Comments:

Equipment blanks not used.

ii. If above PQL, what samples are affected?

Comments:

Equipment blanks not used.

iii. Data quality or usability affected? (Please explain.)

Comments:

Data quality and usability is not affected.

- 7. Other Data Flags/Qualifiers (ACOE, AFCEE, Lab Specific, etc.)
 - a. Defined and appropriate?

X Yes No NA (Please explain.) Comments:

Some results are flagged as "U" as not detected at the quantification limit.

Laboratory Data Review Checklist

Completed by:	Olga Stewart
Title:	Project Manager Date: 8/16/14
CS Report Name	E: Focused Groundwater Characterization Report Date: 8/29/14
Consultant Firm:	Ahtna Engineering Services, LLC
Laboratory Name	e: Pace Analytical Laboratory Report Number: P1405002
ADEC File Num	aber: 2100.38.434 ADEC RecKey Number:
	n ADEC CS approved laboratory receive and <u>perform</u> all of the submitted sample analyses? Yes X No NA (Please explain.) Comments:
b. If the	samples were transferred to another "network" laboratory or sub-contracted to an alternate atory, was the laboratory performing the analyses ADEC CS approved? Yes No X NA (Please explain.) Comments:
Sample	s were not transferred to another laboratory.
	information completed, signed, and dated (including released/received by)? Yes No NA (Please explain.) Comments:
	ect analyses requested? Yes No NA (Please explain.) Comments:
a. Samp	ample Receipt Documentation ble/cooler temperature documented and within range at receipt (4° ± 2° C)? Yes No NA (Please explain.) Comments:
Receive	ed at 5°C
Volat	ole preservation acceptable – acidified waters, Methanol preserved VOC soil (GRO, BTEX, ile Chlorinated Solvents, etc.)? Yes No NA (Please explain.) Comments:

c.	-	condition of Yes	locume No	nted – broken, leaking (Me NA (Please explain.)	ethanol), zero headspace (VOC vials)? Comments:
	No issues	with samp	le cond	ition.	
d.	contain samples	ers/preserva s, etc.?	-	•	ed? For example, incorrect sample of acceptable range, insufficient or missing
	X	Yes	No	NA (Please explain.)	Comments:
_1	Naming o	lid not matc	h the C	OC.	
e.	Data qu	ality or usa	bility a	ffected? (Please explain.)	Comments:
I	Data qual	ity and usab	oility is	not affected.	
		and unders	tandabl No	e? NA (Please explain.)	Comments:
]	No narrat	ive provide	d.		
b.	-	oancies, erro es No	_	C failures identified by the NA (Please explain.)	e lab? Comments:
	There we	re no discre	pancies	s or errors noted.	
c.		ll corrective es No		s documented? NA (Please explain.)	Comments:
	There we	re no correc	tive ac	tions noted.	
d.	What is	the effect of	on data	quality/usability according	to the case narrative? Comments:
]	Data qual	lity and usal	oility is	not affected.	
			erforme No	d/reported as requested on NA (Please explain.)	COC? Comments:
b.		licable hold Yes	ing tim No	es met? NA (Please explain.)	Comments:

	Yes	No		X	NA (Please explain.)	Comments:
Thi	s SDG do	es not i	nclude	any	soil samples.	
	re the report	orted P	QLs le	ess tl	nan the Cleanup Level or	r the minimum required detection level for th
r	Yes	No	X	NA	(Please explain.)	Comments:
The	ere are no	DQOs	for CS	IA I	PQLs.	
e. D	ata quality	v or usa	ability	affe	cted?	
	1 .	,				Comments:
Dat	a quality o	or usab	ility is	not	affected.	
C Samp	oles					
a. M	lethod Bla			_		
					ported per matrix, analys ase explain.)	sis and 20 samples? Comments:
	168	A INU) INA	(Fie	ase explain.)	Comments.
Met	thod blank	ks are n	ot rep	ortec	l.	
	ii. All : Yes	method No	l blank X		ults less than PQL? (Please explain.)	Comments:
No	method bl	anks re	eported	d.		
	iii. If at	oove Po	QL, wl	nat s	amples are affected?	Comments:
No	method bl	lanks re	eported	d.		
	iv. Do t				le(s) have data flags and lease explain.)	if so, are the data flags clearly defined? Comments:
No	samples a	re affe	cted.			
	v. Data	a qualit	y or u	sabil	lity affected? (Please exp	•
						Comments:
Dat	a quality q	and use	hility	is no	ot affected.	Comments:

c. All soils reported on a dry weight basis?

 Organics – One LCS/LCSD reported per matrix, analysis and 20 samples? (LCS/LCSD required per AK methods, LCS required per SW846)
X Yes No NA (Please explain.) Comments:
ii. Metals/Inorganics – one LCS and one sample duplicate reported per matrix, analysis and 2 samples?
Yes X No NA (Please explain.) Comments:
No metals or inorganics in this SDG.
iii. Accuracy – All percent recoveries (%R) reported and within method or laboratory limits? And project specified DQOs, if applicable. (AK Petroleum methods: AK101 60%-120%, AK102 75%-125%, AK103 60%-120%; all other analyses see the laboratory QC pages) Yes No X NA (Please explain.) Comments:
%R are not reported.
 iv. Precision – All relative percent differences (RPD) reported and less than method or laboratory limits? And project specified DQOs, if applicable. RPD reported from LCS/LCSD, MS/MSD, and or sample/sample duplicate. (AK Petroleum methods 20%; all other analyses see the laboratory QC pages) X Yes No NA (Please explain.) Comments:
Precisions are within laboratory control range.
v. If %R or RPD is outside of acceptable limits, what samples are affected? Comments:
NA
vi. Do the affected sample(s) have data flags? If so, are the data flags clearly defined? Yes No X NA (Please explain.) Comments:
No samples are affected.
vii. Data quality or usability affected? (Use comment box to explain.) Comments:
Data quality and usability are not affected.
c. Surrogates – Organics Only
 i. Are surrogate recoveries reported for organic analyses – field, QC and laboratory samples? Yes X No NA (Please explain.) Comments:

b. Laboratory Control Sample/Duplicate (LCS/LCSD)

 ii. Accuracy – All percent recoveries (%R) repo And project specified DQOs, if applicable. (A analyses see the laboratory report pages) 	
Yes X No NA (Please explain.)	Comments:
iii. Do the sample results with failed surrogate re flags clearly defined?	ecoveries have data flags? If so, are the data
Yes No X NA (Please explain.)	Comments:
NA	
iv. Data quality or usability affected? (Use the co	omment box to explain.) Comments:
Data quality and usability are not affected.	
 d. Trip blank – Volatile analyses only (GRO, BTEX, V Soil i. One trip blank reported per matrix, analysis a (If not, enter explanation below.) Yes No X NA (Please explain.) 	and for each cooler containing volatile samples? Comments:
	Comments.
Trip blank not necessary for CSIA.	
 ii. Is the cooler used to transport the trip blank a (If not, a comment explaining why must be expressed in the cooler used to transport the trip blank a (If not, a comment explaining why must be explain.) 	
No trip blanks included.	
iii. All results less than PQL? Yes No X NA (Please explain.)	Comments:
No trip blanks included.	
iv. If above PQL, what samples are affected?	Comments:
No trip blanks included.	
v. Data quality or usability affected? (Please exp	plain.) Comments:
Data quality and usability are not affected.	

	T" 11	D	
e.	Field	Dupl	licate

i. One field duplicate submitted per matrix, analysis and 10 project samples?

Yes X No NA (Please explain.)

Comments:

Per the approved work plan, field duplicates were not submitted for analysis of CSIA.

ii. Submitted blind to lab?

Yes No X NA (Please explain.)

Comments:

No field duplicate.

iii. Precision – All relative percent differences (RPD) less than specified DQOs? (Recommended: 30% water, 50% soil)

RPD (%) = Absolute value of:
$$\frac{(R_1-R_2)}{((R_1+R_2)/2)} \times 100$$

Where $R_1 =$ Sample Concentration

 R_2 = Field Duplicate Concentration

Yes No X NA (Please explain.)

Comments:

No field duplicate.

iv. Data quality or usability affected? (Use the comment box to explain why or why not.)

Comments:

Data quality and usability is not affected.

f. Decontamination or Equipment Blank (If not used explain why).

Yes X No

NA (Please explain.)

Comments:

Per the approved work plan, equipment blanks were not submitted.

i. All results less than PQL?

Yes No X NA (Please explain.)

Comments:

Equipment blanks not used.

ii. If above PQL, what samples are affected?

Comments:

Equipment blanks not used.

iii. Data quality or usability affected? (Please explain.)

Comments:

Data quality and usability is not affected.

- 7. Other Data Flags/Qualifiers (ACOE, AFCEE, Lab Specific, etc.)
 a. Defined and appropriate?

X Yes No NA (Please explain.) Comments:

One result is flagged as "J" as usable only to $\pm 2\%$.

Laboratory Data Review Checklist

Completed by:	Olga Stewart					
Title:	Project Mana	ger		Date:	8/16/14	4
CS Report Name:	Focused G	oundwater Character	ization	Report Date:	8/	/29/14
Consultant Firm:	Ahtna Engir	neering Services, LLC	1			
Laboratory Name:	TestAmeric	ca	Labora	tory Report Nu	mber:	230-108
ADEC File Numb	er: 2100.38	434	ADEC Rec	eKey Number:		
		proved laboratory reconstruction NA (Please ex			submit ments:	ted sample analyses?
laborat	ory, was the la	ransferred to another suboratory performing No NA (Please e	the analyses	s ADEC CS app		
	nformation co	mpleted, signed, and c No NA (Please ex		-	eceived ments:	by)?
	t analyses requ Yes	nested? No NA (Please ex	plain.)	Comi	ments:	
a. Sample Y Samples	e/cooler tempe Yes X No I	Documentation rature documented an NA (Please explain.) immediately followin antil after receipt by the	ng collection	Comments:		

	Volatil	e Chlorinat	ed Solve	ents, etc.)?	
		Yes	No	NA (Please explain.)	Comments:
c.	-	e condition Yes	documei No	nted – broken, leaking (Methano NA (Please explain.)	l), zero headspace (VOC vials)? Comments:
1	No issue	s with samp	ole condi	tion.	
d.	contair sample	ners/preserv s, etc.?	-		or example, incorrect sample eptable range, insufficient or missi
	X	Yes	No	NA (Please explain.)	Comments:
]	Гетрега	ture discrep	oancy no	ted.	
e.	Data q	uality or usa	ability af	fected? (Please explain.)	omments:
	Data qua	lity and usa	bility is	not affected.	
		t and under Yes	standable No	e? NA (Please explain.)	Comments:
a.	Present X Discrep	t and unders	No ors or Q	NA (Please explain.) C failures identified by the lab?	
a.	Present X Discrep	Yes	No	NA (Please explain.)	Comments:
a.	Present X Discrep X	yes pancies, err	No ors or Qo No	NA (Please explain.) C failures identified by the lab?	
ab.	Present X Discrep X	yes pancies, err	No ors or Qo No	NA (Please explain.) C failures identified by the lab? NA (Please explain.)	Comments:
ab.	Present X Discrep X Were a X	pancies, err Yes	ors or Qo No e actions	NA (Please explain.) C failures identified by the lab?	Comments:
a. b. c. d.	Present X Discreg X Were a X	pancies, erry Yes All corrective Yes So the effect	ors or Que No e actions No on data of	NA (Please explain.) C failures identified by the lab?	Comments: Comments:

b. All applicab X Yes	ne notaing tin No	NA (Please explain.)	Comments:
		<u> </u>	
c. All soils rep X Yes	orted on a dry No	weight basis? NA (Please explain	n.) Comments:
d. Are the repo	rted PQLs les	s than the Cleanup Level or	the minimum required detection level for
Yes	No	X NA (Please explain.)	Comments:
Sample used f	or waste char	acterization only – no DQOs	for cleanup level.
e. Data quality	or usability a	ffected?	
c. Data quanty	or asability a		Comments:
Data quality o	r usability is r	not affected.	
<u>C Samples</u> a. Method Blar i. One X Yes		reported per matrix, analysis NA (Please explain.)	s and 20 samples? Comments:
a. Method Blan i. One	method blank	1 1	•
a. Method Blan i. One X Yes	method blank No	1 1	•
a. Method Blan i. One X Yes ii. All n X Yes	method blank No nethod blank No	NA (Please explain.) results less than PQL?	Comments: Comments:
a. Method Blan i. One X Yes ii. All n X Yes iii. If ab	method blank No nethod blank No ove PQL, wha	NA (Please explain.) results less than PQL? NA (Please explain.) at samples are affected?	Comments:
a. Method Blan i. One X Yes ii. All n X Yes	method blank No nethod blank No ove PQL, wha	NA (Please explain.) results less than PQL? NA (Please explain.) at samples are affected?	Comments: Comments:
a. Method Blan i. One X Yes ii. All n X Yes iii. If ab	method blank No nethod blank No ove PQL, what greater than to	nat samples are affected? he PQL.	Comments: Comments:
a. Method Blan i. One X Yes ii. All n X Yes iii. If ab No results are iv. Do the	method blank No nethod blank No ove PQL, what greater than the affected sat No X NA	results less than PQL? NA (Please explain.) at samples are affected? he PQL. mple(s) have data flags and i	Comments: Comments: Comments: f so, are the data flags clearly defined?
ii. All n X Yes iii. If ab No results are iv. Do th Yes No samples are	method blank No nethod blank No ove PQL, what greater than the affected san No X NA e affected.	results less than PQL? NA (Please explain.) at samples are affected? he PQL. mple(s) have data flags and i	Comments: Comments: Comments: f so, are the data flags clearly defined? Comments:

X	X Yes	No	nethods, LCS required p NA (Please explain.)		Comments:
ii	i. Metals/Ir samples? Yes No		– one LCS and one sam	aple duplicate re	eported per matrix, analysis and 20
No me	tals or inorg	anics inc	luded in this SDG.		
	And proj	ect specif	ied DQOs, if applicable	. (AK Petroleur ll other analyse	hin method or laboratory limits? m methods: AK101 60%-120%, s see the laboratory QC pages) Comments:
	laborator LCS/LCS	y limits? SD, MS/N	And project specified D	QOs, if applica apple duplicate. (s)	ed and less than method or ble. RPD reported from (AK Petroleum methods 20%; all Comments:
v	. If %R or	RPD is o	utside of acceptable lim	its, what sampl Commer	
% R ar	nd RPD are	within ac	ceptable limits.		
V	ri. Do the af Yes No		mple(s) have data flags? NA (Please explain.)	If so, are the d Commer	ata flags clearly defined?
No san	nples are aff	ected.			
V	ii. Data qua	lity or usa	ability affected? (Use co	omment box to e	± '
Data q	uality and u	sability a	re not affected.		
c. Surro	ogates – Org	ganics On	ly		
i.				. 1	field, QC and laboratory samples?

b. Laboratory Control Sample/Duplicate (LCS/LCSD)

	ii.	And p	roject	specifi	ed DQOs, if applicable.	orted and within method or laboratory limits? (AK Petroleum methods 50-150 %R; all other
	Y	•		e the lai No	ooratory report pages) NA (Please explain.)	Comments:
%R (of fi	d for N	/letho	1 AK 10	01, sample 14-AKRE-Cu	ttings was outside acceptable limits.
	iii.		-	ple resu define		recoveries have data flags? If so, are the data
	X	Yes	•	No	NA (Please explain.)	Comments:
The 6			t for s	ample	14-AKRE-Cuttings is flag	gged "J" as estimated due to QC criteria not
	iv.	Data o	quality	or usa	bility affected? (Use the	comment box to explain.) Comments:
Data	qua	ality an	d usal	oility ar	e not affected.	
d. Tri <u>Soi</u>	-	One to	rip bla	ınk repo	• '	Volatile Chlorinated Solvents, etc.): Water and and for each cooler containing volatile samples?
	X	Yes		No	NA (Please explain.)	Comments:
			t, a co		o transport the trip blank explaining why must be NA (Please explain.)	and VOA samples clearly indicated on the COC entered below) Comments:
All s	amı	oles we	re shi	pped in	one cooler.	
	iii.				n PQL? NA (Please explain.)	Comments:
					t samples are affected?	Comments:
No re	esul	ts are g	greate	than th	ne PQL.	
	v.	Data o	quality	or usa	bility affected? (Please ex	xplain.) Comments:
Data	qua	ality an	d usał	oility ar	e not affected.	

e.	Field Duplie	cate

i. One field duplicate submitted per matrix, analysis and 10 project samples?

Yes X No NA (Please explain.)

Comments:

Per the approved work plan, a field duplicate was not submitted for the waste characterization sample.

ii. Submitted blind to lab?

Yes No X NA (Please explain.)

Comments:

No field duplicate.

iii. Precision – All relative percent differences (RPD) less than specified DQOs? (Recommended: 30% water, 50% soil)

RPD (%) = Absolute value of:
$$\frac{(R_1-R_2)}{((R_1+R_2)/2)} \times 100$$

Where $R_1 =$ Sample Concentration

 R_2 = Field Duplicate Concentration

Yes No X NA (Please explain.)

Comments:

No field duplicate.

iv. Data quality or usability affected? (Use the comment box to explain why or why not.)

Comments:

Data quality and usability is not affected.

f. Decontamination or Equipment Blank (If not used explain why).

Yes **X No** NA (Please explain.)

Comments:

Equipment blanks were not submitted – all sample materials were disposable.

i. All results less than PQL?

Yes No X NA (Please explain.)

Comments:

Equipment blanks not used.

ii. If above PQL, what samples are affected?

Comments:

Equipment blanks not used.

iii. Data quality or usability affected? (Please explain.)

Data quality and usability is not affected.

Comments:

a. Defined and appropriate?

X Yes No

X Yes No NA (Please explain.) Comments:

APPENDIX F

DATALOGGER DATA (PROVIDED IN NATIVE EXCEL FILE ONLY)

